[image: First Edition]

[image: JetBrains]

C++ Today

The Beast Is Back

Jon Kalb & Gašper Ažman

C++ Today

by Jon Kalb and Gašper Ažman

Copyright © 2015 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com .

		Editors: Rachel Roumeliotis and Katie Schooling

		Production Editor: Shiny Kalapurakkel

		Proofreader: Amanda Kersey

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		May 2015: First Edition

Revision History for the First Edition

		2015-05-04: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C++ Today, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-93166-0

[LSI]

Preface

This book is a view of the C⁠+⁠+ world from two working software engineers with
decades of combined experience programming in this industry. Of course this
view is not omniscient, but is filled with our observations and opinions. The
C⁠+⁠+ world is vast and our space is limited, so many areas, some rather large,
and others rather interesting, have been omitted. Our hope is not to be exhaustive,
but to reveal a glimpse of a beast that is ever-growing and moving fast.

Chapter 1. The Nature of the Beast

In this book we are referring to C⁠+⁠+ as a “beast.” This isn’t from any lack of
love or understanding; it comes from a deep respect for the power, scope, and
complexity of the language,1 the
monstrous size of its installed base, number of users, existing lines of code,
developed libraries, available tools, and shipping projects.

For us, C⁠+⁠+ is the language of choice for expressing our solutions in code.
Still, we would be the first to admit that users need to mind the teeth and claws
of this magnificent beast. Programming in C⁠+⁠+ requires a discipline and
attention to detail that may not be required of kinder, gentler languages that
are not as focused on performance or giving the programmer ultimate control over
execution details. For example, many other languages allow programmers the
opportunity to ignore issues surrounding acquiring and releasing memory. C⁠+⁠+
provides powerful and convenient tools for handling resources generally, but the
responsibility for resource management ultimately rests with the programmer.
An undisciplined approach can have disastrous consequences.

Is it necessary that the claws be so sharp and the teeth so bitey? In other
popular modern languages like Java, C#, JavaScript, and Python,
ease of programming
and safety from some forms of programmer error
are a high priority. But in C⁠+⁠+, these concerns take a back seat to
expressive power and performance.

Programming makes for a great hobby, but C⁠+⁠+ is not a hobbyist
language.2
Software engineers don’t lose sight of programming ease of use and maintenance,
but when designing C⁠+⁠+, nothing has or will stand in the way of the goal of creating a truly general-purpose programming language that can be used in the most demanding
software engineering projects.

Whether the demanding requirements are high performance, low memory footprint,
low-level hardware control, concurrency, high-level abstractions, robustness,
or reliable response times, C⁠+⁠+ must be able to do the job with reasonable
build times using industry-standard tool chains, without sacrificing portability
across hardware and OS platforms, compatibility with existing libraries, or
readability and maintainability.

Exposure to the teeth and claws is not just the price we pay for this power and
performance—sometimes, sharp teeth are exactly what you need.

C⁠+⁠+: What’s It Good For?

C⁠+⁠+ is in use by
millions3 of
professional programmers working on millions of projects. We’ll explore some of
the features and factors that have made C⁠+⁠+ the language of choice in so many
situations. The most important feature of C⁠+⁠+ is that it is both low- and
high-level. Due to that, it is able to support projects of all sizes, ensuring
a small prototype can continue scaling to meet
ever-increasing needs.

High-Level Abstractions at Low Cost

Well-chosen abstractions (algorithms, types, mechanisms, data structures, interfaces,
etc.) greatly simplify reasoning about programs, making programmers more
productive by not getting lost in the details and being able to treat
user-defined types and libraries as well-understood and well-behaved building
blocks. Using them, developers are able to conceive of and design projects of
much greater scope and vision.

The difference in performance between code written using high-level abstractions
and code that does the same thing but is written at a much lower
level4 (at a greater burden for the programmer) is referred
to as the “abstraction penalty.”

As an example: C⁠+⁠+ introduced an I/O model based on streams.
The streams model offers an interface that is, in the common case, slightly
slower than using
native
operating system calls. However, in most cases, it is fast enough that
programmers choose
the superior portability, flexibility, and type-safety of streams to faster
but less-friendly
native calls.

C⁠+⁠+ has features (user-defined types, type templates,
algorithm templates, type aliases, type inference, compile-time introspection,
runtime polymorphism, exceptions, deterministic destruction, etc.) that support
high-level abstractions and a number of different high-level programming
paradigms. It doesn’t force a specific programming paradigm on the user, but it
does support procedural, object-based, object-oriented, generic,
functional, and value-semantic programming paradigms and allows them to easily
mix in the same project, facilitating a tailored approach for each part.

While C⁠+⁠+ is not the only language that offers this variety of approaches,
the number of languages that were also designed to keep the abstraction
penalty as low as possible is far smaller.5 Bjarne Stroustrup, the creator of C++, refers to his goal as “the zero-overhead principle,” which is to say, no abstraction penalty.

A key feature of C⁠+⁠+ is the ability of programmers to create their own types,
called user-defined types (UDTs), which can have the power and
expressiveness of built-in types or fundamentals.
Almost anything that can be done with a fundamental type can also be done with a
user-defined type. A programmer can define a type that functions as if it is a
fundamental data
type, an object pointer, or even as a function pointer.

C⁠+⁠+ has so many features for making high-quality, easy to use libraries that
it can be thought of as a language for building libraries. Libraries can be
created that allow users to express themselves in a natural syntax and still be
powerful, efficient, and safe. Libraries can be designed that have type-specific
optimizations and to automatically clean up resources without explicit user
calls.

It is possible to create libraries of generic algorithms and
user-defined types that are just as efficient or almost as efficient as code
that is not written
generically.

The combination of powerful UDTs, generic programming facilities, and
high-quality libraries with low abstraction penalties make programming at a much
higher level of abstraction possible even in programs that require every last
bit of performance. This is a key strength of C⁠+⁠+.

Low-Level Access When You Need It

C⁠+⁠+ is, among other things, a systems-programming language. It is capable of
and designed for
low-level hardware control, including responding to hardware interrupts. It can
manipulate memory in arbitrary ways down to the bit level with efficiency on par
with hand-written assembly code (and, if you really need it, allows inline assembly code). C⁠+⁠+, from its initial design, is a superset of C,6 which was designed to
be a “portable assembler,” so it has the dexterity and memory efficiency to be
used in OS kernels or device drivers.

One example of the kind of control offered by C⁠+⁠+ is the flexibility available
for where user-defined types can be created. Most high-level languages create
objects by running a construction function to initialize the object in memory
allocated from the heap. C⁠+⁠+ offers that option, but also allows for objects
to be created on the stack. Programmers have little control over the lifetime of
objects created on the stack, but because their creation doesn’t require a call
to the heap allocator, stack allocation is typically orders of magnitude faster. Due
to its limitations, stack-based object allocation can’t be a general replacement
for heap allocation, but in those cases where stack allocation is acceptable, C⁠+⁠+
programmers win by avoiding the allocator calls.

In addition to supporting both heap allocation and stack allocation, C⁠+⁠+
allows programmers to construct objects at arbitrary locations in memory. This
allows the programmer to allocate buffers in which many objects can be very
efficiently created and destroyed with great flexibility over object lifetimes.

Another example of having low-level control is in cache-aware coding. Modern
processors have sophisticated caching characteristics, and subtle changes in the way
the data is laid out in memory can have significant impact on performance due to
such factors as look-ahead cache buffering and false
sharing.7
C⁠+⁠+ offers the kind of control over data memory layout that programmers can
use to avoid cache line problems and best exploit the power of hardware.
Managed languages do not offer the same kind of memory layout flexibility.
Managed language containers do not hold objects in contiguous memory, and so do
not exploit look-ahead cache buffers as C⁠+⁠+ arrays and vectors do.

Wide Range of Applicability

Software engineers are constantly seeking solutions that scale. This is no less
true for languages than for algorithms. Engineers don’t want to find that the
success of their project has caused it to outgrow its implementation language.

Very large applications and large development teams require languages that
scale. C⁠+⁠+ has been used as the primary development language for projects with
hundreds of engineers and scores of modules.8 Its support for separate
compilation of modules makes it possible to create projects where analyzing
and/or compiling all the project code at once would be impractical.

A large application can absorb the overhead of a language with a large runtime
cost, either in startup time or memory usage. But to be useful in applications
as diverse as device drivers, plug-ins, CGI modules, and mobile apps, it is
necessary to have as little overhead as possible. C⁠+⁠+ has a guiding philosophy
of “you only pay for what you use.” What that means is that if you are writing a
device driver that doesn’t use many language features and must fit into a very
small memory footprint, C⁠+⁠+ is a viable option, where a language with a large
runtime requirement would be inappropriate.

Highly Portable

C⁠+⁠+ is designed with a specific hardware model in mind, and this model has minimalistic
requirements. This has made it possible to port C⁠+⁠+ tools and
code very broadly, as machines built today, from nanocomputers to
number-crunching behemoths, are all designed to implement this hardware model.

There are one or more C⁠+⁠+ tool chains available on almost all computing
platforms.9 C⁠+⁠+ is the only high-level language
alternative available on all of the top mobile platforms.10

Not only are the tools available, but it is possible to write portable code that can be used on all these platforms without rewriting.

With the consideration of tool chains, we have moved from language features to
factors outside of the language itself. But these factors have important
engineering considerations. Even a language with perfect syntax and semantics
wouldn’t have any practical value if we couldn’t build it for our target platform.

In order for an engineering organization to seriously consider significant
adoption of a language, it needs to consider availability of tools (including
analyzers and other non-build tools), experienced engineers, software libraries,
books and instructional material, troubleshooting support, and training
opportunities.

Extra-language factors, such as the installed user base and industry
support, always favor C⁠+⁠+ when a systems language is required and tend to
favor C⁠+⁠+ when choosing a language for building large-scale applications.

Better Resource Management

In the introduction to this chapter, we discussed that other popular languages
prioritize ease of programming and safety over performance and control. Nothing
is a better example of the differences between these languages and C⁠+⁠+
than their approaches to memory management.

Most popular modern languages implement a feature called garbage collection,
or GC. With this approach to memory management, the programmer is not required
to explicitly release allocated memory that is no longer needed. The language
runtime determines when memory is “garbage” and recycles it for reuse. The
advantages to this approach may be obvious. Programmers don’t need to track
memory, and “leaks” and “double dispose” problems11 are a thing of the past.

But every design decision has trade-offs, and GC is no exception. One issue
with it is that collectors don’t recognize that memory has
become garbage immediately. The recognition that memory needs to be
released will happen at some unspecified future time (and for some,
implementations may not happen at all—if, for example, the application
terminates before it needs to recycle memory).

Typically, the collector will run in the background and decide when to
recycle memory outside of the programmer’s control. This can result in the
foreground task “freezing” while the collector recycles. Since memory is
not recycled as soon as it is no longer needed, it is necessary to have an
extra cushion of memory so that new memory can be allocated while some
unneeded memory has not yet been recycled. Sometimes the cushion size
required for efficient operation is not trivial.

An additional objection to GC from a C⁠+⁠+ point of view is that memory
is not the only resource that needs to be managed. Programmers need to
manage file handles, network sockets, database connections, locks, and many other resources. Although we may not be in a big hurry
to release memory (if no new memory is being requested), many of these
other resources may be shared with other processes and need to be
released as soon as they are no longer needed.

To deal with the need to manage all types of resources and to release
them as soon as they can be released, best-practice C⁠+⁠+ code relies on
a language feature called deterministic destruction.

In C⁠+⁠+, one way that objects are instantiated by users is to declare them in
the scope of a function, causing the object to be allocated in the function’s
stack frame. When the execution path leaves the function, either by a function
return or by a thrown exception, the local objects are said to have gone out of
scope.

When an object goes out of scope, the runtime “cleans up” the object. The
definition of the language specifies that objects are cleaned up in exactly the
reverse order of their creation (reverse order ensures that if one object
depends on another, the dependent is removed first). Cleanup happens
immediately, not at some unspecified future time.

As we pointed out earlier, one of the key building blocks in C⁠+⁠+ is the user-defined type.
One of the options programmers have when defining their own type is to specify
exactly what should be done to “clean up” an object of the defined type when it
is no longer needed. This can be (and in best practice is) used to release any
resources held
by the object. So if, for example,
the object represents a file being read from or written to, the object’s cleanup
code can
automatically close the file when the object goes out of scope.

This ability to manage resources and avoid resource leaks leads to a
programming idiom called RAII, or Resource Acquisition Is
Initialization.12
The name is a mouthful, but what it means is that for any
resource that our program needs to manage, from file handles to mutexes,
we define a user type that acquires the resource when
it is initialized and releases the resource when it is cleaned up.

To safely manage a particular resource, we just declare the appropriate RAII
object in the local scope, initialized with the resource we need to manage. The
resource is guaranteed to be cleaned up exactly once, exactly when the
managing object goes out of scope, thus solving the problems of resource leaks,
dangling pointers, double releases, and delays in recycling resources.

Some languages address the problem of managing resources (other than memory)
by allowing programmers to add a finally
block to a scope. This block is executed whenever the path of execution
leaves the function, whether by function return or by thrown exception. This is
similar in intent to deterministic destruction, but with this approach, every
function that uses an object of a particular resource managing type would need
to have a finally block added to the function. Overlooking a single instance
of this would result in a bug.

The C⁠+⁠+ approach, using RAII, has all the convenience and clarity of a garbage-collected system, but makes better use of resources, has greater performance
and flexibility, and can be used to
manage resources other than memory. Generalizing resource management instead of
just handling memory is a strong advantage of this approach over garbage
collection and is the reason that most C⁠+⁠+ programmers are not asking that
GC be added to the language.

Industry Dominance

C⁠+⁠+ has emerged as the dominant language in a number of diverse product
categories and
industries.13 What
these domains have in common is either a need for a powerful, portable
systems-programming language or an application-programming language with
uncompromising performance. Some domains where C⁠+⁠+ is dominant or near dominant
include search engines, web browsers, game development, system software and
embedded computing, automotive, aviation, aerospace and defense contracting,
financial engineering, GPS systems, telecommunications, video/audio/image
processing, networking, big science projects, and
ISVs.14

1 When we refer to the C⁠+⁠+ language, we mean to include the accompanying standard library. When we mean to refer to just the language (without the library), we refer to it as the core language.
2 Though some C⁠+⁠+ hobbyists go beyond most professional programmers’ day-to-day usage.
3 http://www.stroustrup.com/bs_faq.html#number-of-C++-users
4 For instance, one can (and people do) use virtual functions in C, but few will contest that p→vtable→foo(p) is clearer than p→foo().
5 Notable peers are the D programming language, Rust, and, to a lesser extent, Google Go, albeit with a much smaller installed base.
6 Being a superset of C also enhances the ability of C⁠+⁠+ to interoperate with other languages. Because C’s string and array data structures have no memory overhead, C has become the “connecting” interface for all languages. Essentially all languages support interacting with a C interface and C⁠+⁠+ supports this as a native subset.
7 http://www.drdobbs.com/parallel/eliminate-false-sharing/217500206
8 For a small sample of applications and operating systems written in C⁠+⁠+: http://www.stroustrup.com/applications.html
9 “An incomplete list of C⁠+⁠+ compilers”: http://www.stroustrup.com/compilers.html
10 C⁠+⁠+ is supported on iOS, Android, Windows Mobile, and BlackBerry: http://visualstudiomagazine.com/articles/2013/02/12/future-c-plus-plus.aspx
11 It would be hard to over-emphasize how costly these problems have been in non-garbage collected languages.
12 It may also stand for Responsibility Acquisition Is Initialization when the concept is extended beyond just resource management.
13 http://www.lextrait.com/vincent/implementations.html
14 Independent software vendors, the people that sell commercial applications for money. Like the creators of Office, Quicken, and Photoshop.

Chapter 2. The Origin Story

This may be old news to some readers, and is admittedly a C⁠+⁠+-centric
telling, but we want to provide a sketch of the history of C⁠+⁠+ in order to put
its recent resurgence in perspective.

The first programming languages, such as Fortran and Cobol, were developed to
allow a domain specialist to write portable programs without needing to know the
arcane details of specific machines.

But systems programmers were expected to master such details of computer
hardware, so they wrote in assembly language. This gave programmers ultimate power and
performance at the cost of portability and tedious detail. But these were
accepted as the price one paid for doing systems programming.

The thinking was that you either were a domain specialist, and therefore wanted
or needed to have low-level details abstracted from you, or you were a systems
programmer and wanted and needed to be exposed to all those details. The systems-programming world was ripe for a language that allowed to you ignore those
details except when access to them was important.

C: Portable Assembler

In the early 1970s, Dennis Ritchie introduced
“C,”1 a programming language
that did for systems programmers what earlier high-level languages had done for
domain specialists.
It turns out that systems programmers also want to be free of the mind-numbing
detail and lack of portability inherent in assembly-language programming, but
they still required a language that gave them complete control of the
hardware when necessary.

C achieved this by shifting the burden of knowing the arcane details of
specific machines to the compiler writer. It allowed the C programmer to ignore
these low-level details, except when they mattered for the specific problem at
hand, and in those cases gave the programmer the control needed to specify
details like memory layouts and hardware details.

C was created at AT&T’s Bell Labs as the implementation language for Unix, but
its success was not limited to Unix. As the portable assembler, C became the go-to language for systems programmers on all platforms.

C with High-Level Abstractions

As a Bell Labs employee, Bjarne Stroustrup was exposed to and appreciated the
strengths of C, but also appreciated the power and convenience of higher-level
languages like Simula, which had language support for object-oriented
programming (OOP).

Stroustrup realized that there was nothing in the nature of C that prevented it
from directly supporting higher-level abstractions such as OOP or type
programming. He wanted a language that provided programmers with both elegance
when expressing high-level ideas and efficiency of execution size and speed.

He worked on developing his own language, originally called C With Classes,
which, as a superset of C, would have the control and power of portable
assembler, but which also had extensions that supported the higher-level
abstractions that he wanted from Simula.
[DEC]

The extensions that he created for what would ultimately become known as
C⁠+⁠+ allowed users to define their own types. These types could behave
(almost) like the built-in types provided by the language, but could also have
the inheritance relationships that supported OOP.

He also introduced templates as a way of creating code that could work without
dependence on specific types. This turned out to be very important to the
language, but was ahead of its time.

The ’90s: The OOP Boom, and a Beast Is Born

Adding support for OOP turned out to be the right feature at the right time for
the ʽ90s. At a time when GUI programming was all the rage, OOP was the right
paradigm, and C⁠+⁠+ was the right implementation.

Although C⁠+⁠+ was not the only language supporting OOP, the
timing of its creation and its leveraging of C made it the mainstream language
for software engineering on PCs during a period when PCs were booming.

The industry interest in C⁠+⁠+ became strong enough that it made sense to turn
the definition of the language over from a single individual (Stroustrup) to an
ISO (International Standards Organization) Committee.2 Stroustup continued
to work on the design of the language and is an influential member of the ISO
C⁠+⁠+ Standards Committee to this day.3

In retrospect, it is easy to see that OOP, while very useful, was over-hyped.
It was going to solve all our software engineering problems because it would
increase
modularity and reusability. In practice, reusability goes up within specific
frameworks, but these frameworks introduce dependencies, which reduce
reusability between frameworks.

Although C⁠+⁠+ supported OOP, it wasn’t limited to any single paradigm. While
most of
the industry saw C⁠+⁠+ as an OOP language and was building its popularity
and installed base using object frameworks, others where exploiting other C⁠+⁠+
features in a very different way.

Alex Stepanov was using C⁠+⁠+ templates to create what would eventually
become known as the Standard Template Library (STL). Stepanov was exploring a
paradigm he called generic programming.

Generic programming is “an approach to programming that focuses on designing
algorithms and data structures so that they work in the most general setting
without loss of efficiency.”
[FM2G]

Although the STL was a departure from every other library at the time,
Andrew Koenig, then the chair of the Library Working Group for the ISO C⁠+⁠+
Standards Committee, saw the value in it and invited Stepanov to make a
submission to the committee. Stepanov was skeptical that the committee would
accept such a large proposal
when it was so close to releasing the first version of the standard. Koenig
asserted that Stepanov was correct. The committee would not accept it…if
Stepanov didn’t submit it.

Stepanov and his team created a formal specification for his library and
submitted it to the committee.
As expected, the committee felt that it
was an overwhelming submission that came too late to be accepted.

Except that it was brilliant!

The committee recognized that generic programming was an important new
direction and that the STL added much-needed functionality to C⁠+⁠+. Members
voted to accept the STL into the standard. In its haste, it
did trim the submission of a number of features, such as hash tables, that it
would end up standardizing later, but it accepted most of the library.

By accepting the library, the committee introduced generic programming to a
significantly larger user base.

In 1998, the committee released the first ISO standard for C⁠+⁠+. It
standardized “classic” C⁠+⁠+ with a number of nice improvements and included
the STL, a library and programming paradigm clearly ahead of its time.

One challenge that the Library Working Group faced was that it was tasked not to
create libraries, but to standardize common usage. The problem it faced was
that most libraries were either like the STL (not in common use) or they were
proprietary (and therefore not good candidates for standardization).

Also in 1998, Beman Dawes, who succeeded Koenig as Library Working Group chair, worked
with Dave Abrahams and a few other members of the Library
Working Group to set up the Boost
Libraries.4 Boost is an
open source, peer-reviewed collection of C⁠+⁠+
libraries,5 which may or may not be candidates for
inclusion in the standard.

Boost was created so that libraries that might be candidates for standardization
would be vetted (hence the peer reviews) and popularized (hence the open
source).

Although it was set up by members of the Standards Committee with the express
purpose of developing candidates for standardization, Boost is an independent
project of the nonprofit Software Freedom Conservancy.6

With the release of the standard and the creation of Boost.org, it seemed that
C⁠+⁠+ was ready to take off at the end of the ʽ90s. But it didn’t work out that way.

The 2000s: Java, the Web, and the Beast Nods Off

At over 700 pages, the C⁠+⁠+ standard demonstrated something about
C⁠+⁠+ that some critics had said about it for a while: C⁠+⁠+ is a
complicated beast.

The upside to basing C⁠+⁠+ on C was that it instantly had access to all
libraries written in C and could leverage the knowledge and familiarity of
thousands of C programmers.

But the downside was that C⁠+⁠+ also inherited all of C’s baggage. A lot of
C’s syntax and defaults would probably be done very differently if it were being
designed from scratch today.

Making the more powerful user-defined types of C⁠+⁠+ integrate with C so that a
data structure defined in C would behave exactly the same way in both C and C⁠+⁠+
added even more complexity to the language.

The addition of a streams-based input/output library made I/O much more
OOP-like, but meant that the language now had two complete and completely
different I/O libraries.

Adding operator overloading to C⁠+⁠+ meant that user-defined types could be
made to behave (almost) exactly like built-in types, but it also added
complexity.

The addition of templates greatly expanded the power of the language, but at no
small increase in complexity. The STL was an example of the power of templates,
but was a complicated library based on generic programming, a programming
paradigm that was not appreciated or understood by most programmers.

Was all this complexity worth it for a language that combined the control and
performance of portable assembler with the power and convenience of high-level
abstractions? For some, the answer was certainly yes, but the environment was
changing enough that many were questioning this.

The first decade of the 21st century saw desktop PCs that were powerful
enough that it didn’t seem worthwhile to deal with all this complexity when there
were alternatives that offered OOP with less complexity.

One such alternative was Java.

As a bytecode interpreted, rather than compiled, language, Java couldn’t squeeze out all
the performance that C⁠+⁠+ could, but it did offer OOP, and the interpreted
implementation was a powerful feature in some contexts.7

Because Java was compiled to bytecode that could be run on a Java
virtual machine, it was possible for Java applets to be downloaded and run
in a web page. This was a feature that C⁠+⁠+ could only match using platform-specific plug-ins, which were not nearly as seamless.

So Java was less complex, offered OOP, was the language of the Web (which was
clearly the future of computing), and the only downside was that it ran a little
more slowly on desktop PCs that had cycles to spare. What’s not to like?

Java’s success led to an explosion of what are commonly called managed
languages. These compile into bytecode for a virtual machine with a just-in-time
compiler, just like Java. Two large virtual machines emerged from this
explosion. The elder, Java Virtual Machine, supports Java, Scala, Jython, Jruby,
Clojure, Groovy, and others. It has an implementation for just about every
desktop and server platform in existence, and several implementations for some
of them. The other, the Common Language Interface, a Microsoft virtual
machine, with implementations for Windows, Linux, and OS X, also supports
a plethora of languages, with C#, F#, IronPython, IronRuby, and even C⁠+⁠+/CLI
leading the pack.

Colleges soon discovered that managed languages were both easier to teach and easier to
learn. Because they don’t expose the full power of pointers8 directly to programmers, it is less
elegant, and sometimes impossible, to do some things that a systems programmer might want to do, but it also
avoids a number of nasty programming errors that have been the bane of many
systems programmers’ existence.

While things were going well for Java and other managed languages, they were not going so well for
C⁠+⁠+.

C⁠+⁠+ is a complicated language to implement (much more than C, for
example), so there are many fewer C⁠+⁠+ compilers than there are
C compilers. When the Standards Committee published the first C⁠+⁠+
standard in 1998, everyone knew that it would take years for the compiler
vendors to deliver a complete implementation.

The impact on the committee itself was predictable. Attendance at Standards
Committee meetings fell off. There wasn’t much point in defining an even newer version
of the standard when it would be a few years before people would begin to have
experience using the current one.

About the time that compilers were catching up, the committee
released the 2003 standard. This was essentially a “bug fix” release with no
new features in either the core language or the standard library.

After this, the committee released the first and only C⁠+⁠+ Technical Report,
called TR1. A technical report is a way for the committee to tell the community
that it considers the content as standard-candidate material.

The TR1 didn’t contain any change to the core language, but defined about a dozen new
libraries. Almost all of these were libraries from Boost, so most programmers already had access to them.

After the release of the TR1, the committee devoted itself to releasing a new
update. The new release was referred to as “0x” because it was
obviously going to be released sometime in 200x.

Only it wasn’t. The committee wasn’t slacking off—they were adding a lot of
new features. Some were small nice-to-haves, and some were groundbreaking. But
the new standard didn’t ship until 2011. Long, long overdue.

The result was that although the committee had been working hard, it had
released little of interest in the 13 years from 1998 to 2011.

We’ll use the history of one group of programmers, the ACCU, to illustrate
the rise and fall of interest in C⁠+⁠+.
In 1987, The C Users Group (UK) was formed as an informal group for those who
had an interest in the C language and systems programming. In 1993, the group
merged with the European C⁠+⁠+ User Group (ECUG) and continued as the
Association of C and C⁠+⁠+ Users.

By the 2000s, members were interested in languages other than C and C⁠+⁠+, and to
reflect that, the group changed its name to just the initials ACCU. Although the
group is still involved in and supporting C⁠+⁠+ standardization, its name no
longer stands for C⁠+⁠+, and members are also exploring other languages,
especially C#, Java, Perl, and
Python.9

By 2010, C⁠+⁠+ was still in use by millions of engineers, but the excitement of
the ʽ90s had faded. There had been over a decade with few enhancements released
by the Standards Committee. Colleges and the cool kids were defecting to Java and managed languages. It
looked like C⁠+⁠+ might just turn into another legacy-only beast like Cobol.

But instead, the beast was just about to roar back.

1 http://cm.bell-labs.co/who/dmr/chist.html
2 http://www.open-std.org/jtc1/sc22/wg21/
3 Most language creators retain control of their creation or give them to standards bodies and walk away. Stroustrup’s continuing to work on C⁠+⁠+ as part of the ISO is a unique situation.
4 http://www.boost.org/users/proposal.pdf
5 http://boost.org/
6 https://sfconservancy.org/
7 “Build once, run anywhere,” while still often not the case with Java, is sometimes much more useful for deployment than the “write once, build anywhere” type of portability of C⁠+⁠+.
8 Java’s “references” can be null, and can be re-bound, so they are pointers; you just can’t increment them.
9 http://accu.org/index.php/aboutus

Chapter 3. The Beast Wakes

In this chapter and the next, we are going to be exploring the factors that
drove interest back to C⁠+⁠+ and the community’s response to this growing
interest. However, we’d first like to point out that, particularly for the
community responses, this isn’t entirely a one-way street. When a language
becomes more popular, people begin to write and talk about it more. When people
write and talk about a language more, it generates more interest.

Debating the factors that caused the C⁠+⁠+ resurgence versus the factors caused
by it isn’t the point of this book. We’ve identified what we think are the big
drivers and the responses, but let’s not forget that these responses are also
factors that drive interest in C⁠+⁠+.

Technology Evolution: Performance Still Matters

Performance has always been a primary driver in software development. The
powerful desktop machines of the 2000s didn’t signal a permanent change in our
desire for performance; they were just a temporary blip.

Although powerful desktop machines continue to exist and will remain very
important for software development, the prime targets for software development
are no longer on the desk (or in your lap). They are in your pocket and in the
cloud.

Modern mobile devices are very powerful computers in their own right, but they
have a new concern for performance: performance per watt. For a
battery-powered mobile device, there is no such thing as spare cycles.

Earlier we pointed out that C⁠+⁠+ is the only high-level language
available1 for all
mobile devices running iOS, Android, or Windows. Is this because Apple, which
adopted Objective-C and invented Swift, is a big fan of C⁠+⁠+? Is it because
Google, which invented Go and Dart, is a big fan of C⁠+⁠+? Is it because Microsoft,
which
invented C#, is a big fan of C⁠+⁠+? The answer is that these companies want
their devices to feature apps that are developed quickly, but are responsive
and have long battery life. That means they need to offer developers a language
with high-level abstraction features (for fast development) and high
performance. So they offer C⁠+⁠+.

Cloud-based computers, that is, computers in racks of servers in some remote data
center, are also powerful computers, but even there we are concerned about
performance per watt. In this case, the concern isn’t dead batteries, but power
cost. Power to run the machines, and power to cool them.

The cloud has made it possible to build enormous systems spanning hundreds,
thousands, or tens of thousands of machines bound to a single purpose. A modest
improvement in speed at those scales can represent substantial savings
in infrastructure costs.

James Hamilton, a vice president and distinguished engineer on the Amazon Web Services team, reported on a study he did of modern high-scale data
centers.2
He broke the costs down into (in decreasing order of significance) servers,
power distribution & cooling, power, networking equipment, and other
infrastructure. Notice that the top three categories are all directly related to
software performance, either performance per hardware investment or performance per
watt. Hamilton determined that 88% of the costs are dependent on performance. A
1% performance improvement in code will almost produce a 1% cost savings, which
for a data center at scale will be a significant amount of money.

For companies with server farms the size of Amazon, Facebook, Google, or
Microsoft, not using C⁠+⁠+ is an expensive alternative.

But how is this different from how computing in large enterprise companies has
always been done? Look again at the list of expense categories. Programmers and
IT professionals are not listed. Did Hamilton forget them? No. Their cost is in
the noise. Managed languages that have focused on programmer productivity at the
expense of performance are optimizing for a cost not found in the modern scaled
data center.3

Performance is back to center stage, and with it is an interest in C⁠+⁠+ for both
cloud and mobile computing. For mobile computing, the “you only pay for what you use” philosophy and the
ability to run in a constrained memory environment are additional wins. For cloud computing, the fact that C⁠+⁠+ is highly portable and can run
efficiently and reliably on a wide variety of low-cost hardware are additional wins, especially
because one can tune directly for the hardware one owns.

Language Evolution: Modernizing C⁠+⁠+

In 2011, the first major revision to Standard C⁠+⁠+ was released, and it was very
clear that the ISO Committee had not been sitting on its hands for the previous 13
years. The new standard was a major update to both the core language and the
standard library.4

The update, which Bjarne Stroustrup, the creator of C⁠+⁠+, reported “feels like
a new language,”5 seemed to offer something for
everyone. It had dozens of changes, some small and some fundamental, but the
most important achievement was that C⁠+⁠+ now had the features programmers
expected of a modern language.

The changes were extensive. The page count of the ISO Standard went from 776 for
the 2003 release to 1,353 for the 2011 release. It isn’t our purpose here to
catalogue them all. Other references are available for
that.6 Instead, we’ll just give
some idea about the kinds of changes.

One of the most important themes of the release was simplifying the language.
No one would like to “tame the beast” of its complexity more than the Standards
Committee. The challenge that the committee faces is that it can’t remove anything already
in the standard because that would break existing code. Breaking existing code is a nonstarter for the
committee.

It may not seem possible to simplify by adding to an already complicated
specification, but the committee found ways to do exactly that. It
addressed some minor annoyances and inconsistencies, and added the ability to have the compiler
deduce types in situations where the programmer used to have to spell them out
explicitly. It added a new version of the “for” statement that would
automatically iterate over containers and other user-defined types.

It made enumeration and initialization syntax more consistent, and added the
ability to
create functions that take an arbitrary number of parameters of a specified type.

It has always been possible in C⁠+⁠+ to define user-defined types that can hold
state and be called like functions. However, this
ability has been underutilized because the syntax for creating user-defined types
for this
purpose was verbose, was hardly obvious, and as such added some inconvenient
overhead. The new language update introduced a
new syntax for defining and instantiating function objects (lambdas) to make
them convenient to use. Lambdas can also be used as closures, but they do not
automatically capture the local scope—the programmer has to specify what to
capture explicitly.

The 2011 update added better support for character sets, in particular, better
support for Unicode. It standardized a regular expression library (from Boost
via the TR1) and added support for “raw” literals that makes working with
regular expressions easier.

The standard library was significantly revised and extended. Almost all of the
libraries defined in the TR1 were incorporated into the standard. Types that
were already defined in the standard library, such as STL containers, were
updated to reflect new core language features; and new containers, such as a
singly-linked list and hash-based associative containers, were added.

All of these features were additions to the language specification, but had the
effect of making the language simpler to learn and use for everyday programming.

Reflecting that C⁠+⁠+ is a language for library building, a number of new
features made life easier for library authors. The update introduced language
support for “perfect forwarding.” Perfect forwarding refers to the ability of a library author to capture a set of parameters to a function and “forward” these
to another function without changing anything about the parameters. Boost
library authors had demonstrated that this was achievable in classic C⁠+⁠+, but
only with great effort and language mastery.

Now, mere mortals can implement libraries using perfect forwarding by taking
advantage of a couple of features new in the 2011 update: variadic templates
and rvalue references.

A richer type system allows better modeling of requirements that can be checked
at compile time, catching wide classes of bugs automatically. The tighter the
type system models the problem, the harder it is for bugs to slip through the
cracks. It also often makes it easier for compilers to prove additional
invariants, enabling better automatic code optimization. New features aimed at
library builders included better support for type functions.7

Better support for compile-time reflection of types8 enables
library
writers to adapt their libraries to wide varieties of user types, using the
optimal algorithms for the capabilities the user’s objects expose without
additional burden on the users of the library.

The update also broke ground in some new areas. Writing multithreaded
code in C⁠+⁠+ has been possible, but only with the use of platform-specific libraries. With the concurrency support introduced in the 2011 update, it is now
possible to write multithreaded code and libraries in a portable way.

This update also introduced move semantics, which Scott Meyers referred to as
the update’s “marquee feature.” Avoiding unnecessary copies is a constant challenge for
programmers who are concerned about performance, which C⁠+⁠+ programmers almost
always are. Because of the power and flexibility of “classic” C⁠+⁠+, it has
always been possible to avoid unnecessary copies, but sometimes this was at the
cost of code that took longer to write, was less readable, and was harder to reuse.

Move semantics allow programmers to avoid unnecessary copies with code that is
straightforward in both writing and reading. Move semantics are a solution to an
issue (unnecessary copies) that C⁠+⁠+ programmers care about, but is
almost unnoticed in other language environments.

This isn’t a book on how to program. Our goal is to talk about C⁠+⁠+, not
teach it. But we can’t help ourselves, we want to show what modern C⁠+⁠+ really
means, so if you are interested in code examples of how C⁠+⁠+ is evolving, don’t
skip Chapter 5, Digging Deep on Modern C⁠+⁠+.

As important as it was to have a new standard, it wouldn’t have had any
meaningful impact if there were no tools that implemented it.

Tools Evolution: The Clang Toolkit

Due to its age and the size of its user base, there are many tools for C⁠+⁠+ on
many different platforms. Some are proprietary, some are free, some are open
source, some are cross-platform. There are too many to list, and that would be
out of scope for us here. We’ll discuss a few interesting examples.

Clang is the name of a compiler frontend for the C family of
languages.9 Although it was
first released in 2007, and its code generation reached production quality for C
and Objective-C later that decade, it wasn’t really interesting for C⁠+⁠+ until
this decade.

Clang is interesting to the C⁠+⁠+ community for two reasons. The first is that
it is a new C⁠+⁠+ compiler. Due to its wide feature-set and a few syntactic
peculiarities that make it very hard to parse, new C⁠+⁠+ frontends don’t
come along everyday. But more than just being an alternative, its value
lay in its much more helpful error messages and significantly faster compile times.

As a newer compiler, Clang is still catching up with older compilers
on the performance of generated code10 (which is usually of primary consideration
for C⁠+⁠+ programmers). But its better build time and error messages increase
programmer
productivity. Some developers have found a best-of-both-worlds solution by using
Clang for the edit-build-test-debug cycle, but build production releases with an
older compiler. For developers using GCC, this is facilitated by Clang’s desire
to be “drop in” compatible with GCC. Clang brought some helpful competition to
the compiler space, making GCC also improve significantly. This competition
is benefiting the community immensely.

One result of the complexity of C⁠+⁠+ is that compile-time error messages can
sometimes be frustratingly inscrutable, particularly where templates are
involved. Clang established its reputation as a C⁠+⁠+ compiler by generating
error messages that were more understandable and more useful to programmers. The impact that Clang’s error messages have had on the industry can be seen in how much other compilers have improved their own.11

The second reason that Clang is interesting to the C⁠+⁠+ community is because it is more than just a compiler; it is an open source toolkit that is itself
implemented in high-quality C⁠+⁠+. Clang is factored to support the building of
development tools that “understand” C⁠+⁠+.

Clang contains a static analysis framework, which the clang-tidy tool uses.
Writing additional checkers for the framework is quite simple. Using the Clang
toolkit, programmers can build dynamic analyzers, source-to-source translators,
refactoring tools, or make any number of other kinds of tools.

There are a number of dynamic analyzers that come built into Clang:
AddressSanitizer,12
MemorySanitizer,13
LeakSanitizer,14 and
ThreadSanitizer.15 The compile
time flag -fdocumentation will look for Doxygen-style comments and warn you
if the code described doesn’t match the comments.

Metashell16 is an
interactive environment for template metaprogramming. American fuzzy
lop17 is a security-oriented fuzzer
that uses code-coverage information from the binary under test to guide its
generation of test cases. Mozilla has built a source code indexer for large
code bases
called DXR.18

Over time, the performance of Clang’s generated code will improve, but the
importance of that will pale compared to the impact on the community of the
tools that will be built from the Clang toolkit. We’ll see more and more tools
for understanding, improving, and verifying code as well as have a platform for
trying out new core language features.19

Library Evolution: The Open Source Advantage

The transition to a largely open source world has
benefited C⁠+⁠+ relative to managed languages, but especially Java. This came
from two sources. First, shipping source code further improved
runtime-performance of C⁠+⁠+; and second, the availability of source
reduced the advantage of Java’s “build once, run anywhere” deployment story,
since “write once, build for every platform” became viable.

The model used by most proprietary libraries was for the library vendor to ship
library headers and compiled object files to application developers. Among the
implications of this are the fact that this limits the portability options
available to application developers. Library vendors can’t provide object files
for every possible hardware/OS platform combination, so inevitably practical
limits prevented applications from being offered on some platforms because
required libraries were not readily available.

Another implication is that library vendors, again for obvious practical
reasons, couldn’t provide library object files compiled with every combination
of compiler settings. This would mean the final application was almost always
suboptimal in the way that their libraries were compiled.

One particular issue here is processor-specific compilation. Processor families
have a highly compatible instruction set that all new processors support for
backward compatibility. But new processors often add new instructions to enable
their new features. Processors also vary greatly in their pipeline architectures,
which can make code that performs well on one processor less desirable on
another. Compiling for a specific processor is therefore highly desirable.

This fact had worked in Java’s favor. Earlier we referred to Java as an
interpreted language, which is true to a first approximation, but managed
languages are
implemented with a just-in-time compiler that can enhance performance over what
would be possible by strictly interpreting bytecode.20 One
way that the JIT can enhance performance is to compile for the actual
processor on which it is running.

A C⁠+⁠+ library provider would tend to provide a library object compiled to the
“safe,”
highly-compatible instruction set, rather than have to supply a number of
different object files, one for each possible processor. Again, this would often
result in suboptimal performance.

But we no longer live in a world dominated by proprietary libraries.
We live in an open source
world. The success and influence of the Boost libraries contributed to this, but
the open source movement has been growing across all languages and platforms.
The fact that libraries are now available as source code means that developers
can target any platform with any compiler and compiler options that they choose,
and support optimizations that require the source.

Cloud computing only reinforces this advantage. In a cloud computing scenario,
developers can target their own hardware with custom builds that free the
compiler to optimize for the particular target processor.

Closed-source libraries also forced library vendors to eschew the use of
templates, instead relying on runtime dispatch and object-oriented programming, which is slower and harder to make type-safe. This effectively barred them from
using some of the most powerful features of C⁠+⁠+. These days, vending template
libraries with barely any compiled objects is the norm, which tends to make
C⁠+⁠+ a much more attractive proposition.

1 C⁠+⁠+ is not necessarily the recommended language on mobile platforms but is supported in one way or another.
2 http://perspectives.mvdirona.com/2010/09/overall-data-center-costs/
3 To the extent that such languages are being used for prototyping, to bring features to market quickly, or for software that doesn’t need to run at scale, there is still a role for these languages. But it isn’t in data centers at scale.
4 And much appreciated. In a 2015 survey, Stack Overflow found that C⁠+⁠+11 was the second “most loved” language of its users (after newcomer Swift). http://stackoverflow.com/research/developer-survey-2015
5 https://isocpp.org/tour
6 http://en.wikipedia.org/wiki/C%2B%2B11
7 Implemented as templated using aliases.
8 Through a plethora of new type-traits and subtle corrections to the SFINAE rules. Substitution Failure is not an Error is an important rule for finding the correct template to instantiate, when more than one appears to match initially. It allows for probing for capabilities of types, since using a capability that isn’t offered will just try a different template.
9 C, C⁠+⁠+, Objective-C, and Objective-C⁠+⁠+
10 For some CPUs and/or code cases, it has caught up or passed its competitors.
11 Some examples comparing error messages from Clang with old and newer versions of GCC: https://gcc.gnu.org/wiki/ClangDiagnosticsComparison
12 http://clang.llvm.org/docs/AddressSanitizer.html
13 http://clang.llvm.org/docs/MemorySanitizer.html
14 http://clang.llvm.org/docs/LeakSanitizer.html
15 http://clang.llvm.org/docs/ThreadSanitizer.html
16 https://metashell.readthedocs.org/en/latest/
17 http://lcamtuf.coredump.cx/afl/
18 https://dxr.readthedocs.org/en/latest/
19 Clang and its standard library implementation, libc++, are usually the first compiler and library to implement new C⁠+⁠+ features.
20 The JIT has the ability to see the entire application. This allows for optimizations that would not be possible to a compiler linking to compiled library object files. Today’s C⁠+⁠+ compilers use link-time (or whole-program) optimization features to achieve these optimizations. This requires that object files be compiled to support this feature. On the other hand, the JIT compiler was hampered by the very dynamic nature of Java, which forbade most of the optimizations the C++ compiler can do.

Chapter 4. The Beast Roars Back

In this chapter, we’ll discuss a number of C⁠+⁠+ resources, most of which are
either new or have been revitalized in the last few years. Of course this isn’t an
exhaustive list. Google and Amazon are your friends.

WG21

Our first topic is the ISO Committee for C⁠+⁠+ standardization, which at 25
years old, is hardly a new resource, but it certainly glows with new life. The
committee is formally called ISO/IEC JTC1 (Joint Technical Committee 1) / SC22
(Subcommittee 22) / WG21 (Working Group
21).1 Now you know why most people
just call it the C⁠+⁠+ Standards Committee.

As big an accomplishment as it is to release a new or updated major standard
like C⁠+⁠+98 or C⁠+⁠+⁠1⁠1, it doesn’t have much practical impact if there are no
tools that implement it. As mentioned earlier, this was a
significant issue with the release of the standard in 1998. Committee attendance
fell off because implementation was understood to be years away.

But this was not the case for the release in 2011. Tool vendors had been
tracking the standard as it was being developed. Although it called for
significant changes to both the core language and the standard library, the new
update was substantially implemented by a couple of different open source
implementations, GCC and Clang, soon after its release.2 Other tool
vendors had also demonstrated their commitment to the update. Unlike some
language updates,3 this was clearly
adopted by the entire community as the path forward.

The psychological impact of this should not be underestimated. Thirteen years is
a very long time in the world of programming languages. Some people had begun to
think of C⁠+⁠+ as an unchanging definition, like chess or Latin. The update
changed the perception of C⁠+⁠+ from a dying monster of yesteryear into a
modern, living creature.

The combination of seeing C⁠+⁠+ as a living creature, and one where
implementations closely followed4 standardization, meant that Standards Committee meeting attendance
began to increase.5

The committee reformulated itself6
to put the new members to the best use. It had long been formed of a
set of subcommittees called working groups. There were Core, Library, and
Evolution working groups; but with many new members and so many areas in which
the industry is asking for standardization, new working groups were the answer.
The Committee birthed over a dozen new “Domain Specific Investigation &
Development” groups.

The first new product of the committee was a new standard in 2014. C⁠+⁠+14 was
not as big a change as C⁠+⁠+11, but it did significantly improve some of the new
features in C⁠+⁠+11 by filling in the gaps discovered with real-world experience
using these new features.

The target for the next standard release is 2017. The working groups are busy
reviewing and developing suggestions that may or may not become part of the next
update.

The existence of a vital Standards Committee that is engaged with the language
users, tool vendors, and educators is a valuable resource. Actively discussing
and debating possible features is a healthy process for the entire community.

In Chapter 6, The Future of C⁠+⁠+, we’ll discuss more about the working groups
and what they are working on.

Tools

Clang is clearly the most significant new development in the C⁠+⁠+ toolchain,
but the resurgence of interest in C⁠+⁠+ has brought more than just Clang to the
community. We’ll discuss a few interesting newcomers.

biicode7 is a cross-platform dependency
manager that you can use to download, configure, install, and manage publicly
available libraries, like the Boost libraries. This is old-hat for other
languages, but this is new technology for C⁠+⁠+. The site only hit 1.0 in the
middle of 2014 and is still in beta, but it has thousands of users and has been
growing aggressively.

Undo Software8 has a product called UndoDB,
which is a reversible debugger. The idea of a reversible debugger, one that
supports stepping backward in time, is so powerful that it has been implemented
many times. The problem with previous implementations is that they run so slowly and
require so much data collection that they aren’t practical for regular use. Undo has
found a way to increase the speed and reduce the data requirements so that
the approach is practical for the first time. This product isn’t C⁠+⁠+ only, but
its marketing is focused on the C⁠+⁠+ community.

JetBrains9 has built its reputation on
IDEs with strong refactoring features and has over a dozen products for
developers. But until launching CLion10
in 2015, it’s not had a C⁠+⁠+ product. CLion is a cross-platform IDE for C
and C⁠+⁠+ with support for biicode. CLion can be used on Windows, but for
developers that use Microsoft’s Visual Studio for C⁠+⁠+ development, JetBrains
is updating ReSharper,11 its VS
extension, which supports C#, .NET, and web-development languages to also
support C⁠+⁠+.

The last tool that we’ll mention isn’t a development tool, but a deployment
tool. OSv12 is an operating system written in C⁠+⁠+ that
is optimized for use in the cloud. By rethinking the requirements of a virtual
machine existing in the cloud, Cloudius Systems has created an OS with reduced
memory and CPU overhead and lightweight scheduling. Why was this implemented in
C⁠+⁠+ instead of C? It turns out that gets asked a lot:

While C⁠+⁠+ has a deserved reputation for being incredibly complicated, it is
also incredibly rich and flexible, and in particular has a very flexible
standard library as well as add-on libraries such as boost. This allows OSV code
to be much more concise than it would be if it were written in C, while
retaining the close-to-the-metal efficiency of
C.13

OSv FAQ

Standard C⁠+⁠+ Foundation

Many languages14 are either
created by or adopted by a large company that considers the adoption of the
language by others a strategic goal and so markets and promotes the language.
Although AT&T was supportive of C⁠+⁠+,15 it never
“marketed” the language to encourage adoption by external developers.

Various tool vendors and publishers have promoted C⁠+⁠+ tools or books, but
until this decade, no organization16 has marketed C⁠+⁠+ itself. This didn’t seem to be an
impediment to the growth and acceptance of the language. But in 2010, as the
committee was about to release the largest update to the standard since it was
created, interest in C⁠+⁠+ had noticeably increased. The time seemed ripe for a
central place for C⁠+⁠+-related information.

At least it seemed like a good idea to Herb Sutter, the Standards Committee’s
Convener.17 Sutter wanted to
build an organization that would promote C⁠+⁠+ and be independent of (but
supported by) the players in the C⁠+⁠+ community. With their support, he was
able to launch the Standard C⁠+⁠+ Foundation18
and http://isocpp.org in late 2012.

In addition to serving as a single feed for all C⁠+⁠+-related news, the website
also became the home for the “C⁠+⁠+ Super-FAQ.”19
The Super-FAQ acquired its name because it is the merger of two of the largest
FAQs in C⁠+⁠+.

Bjarne Stroustrup, as the language’s creator, was the target of countless, often
repetitive questions, so he had created a large FAQ on his personal
website.20

The moderators of the Usenet group comp.lang.c++ were also maintaining a
FAQ21 for C⁠+⁠+. In 1994, Addison-Wesley published this as “C⁠+⁠+ Faqs”
by moderators Marshall Cline and Greg Lomow. In 1998, Cline and Lomow were
joined by Mike Girou with the second
edition,22
which covered the then recently released standard.

Both of these FAQs have been maintained online separately for years, but with
the launch of http://isocpp.org, it was clearly time to merge them. The merged FAQ
is in the form of a wiki so that the community can comment and make
improvements.

Today isocpp.org is the home not only to the best source of news about the C⁠+⁠+
community and the Super-FAQ, but also has a list of upcoming events, some
“getting started” help for people new to C⁠+⁠+, a list of free
compilers,23 a list of local C⁠+⁠+ user
groups,24 a list of
tweets,25 recent C⁠+⁠+
questions from Stack Overflow, information about the Standards Committee and the
standards process, including statuses, upcoming
meetings,26 and links for discussion forums by
working group.27

Boost: A Library and Organization

As described earlier, Boost was created to host free, open source, peer-reviewed
libraries that may or may not be candidates for standardization. Boost has
grown to include over 125 libraries,28 is
the most used C⁠+⁠+ library outside of the standard library, and it has been the
single best source of libraries accepted into the standard since its inception
in 1998.

The Boost libraries and boost.org have become the center of the Boost community,
which is made up of the volunteers who have developed, documented, reviewed,
maintained, and distributed the libraries.

Since 2005, Boost as an organization has regularly participated in the
Google Summer of Code
program, giving students an opportunity to learn cutting-edge C⁠+⁠+ library
development skills.29

Since 2006, Boost has gathered for an intimate, week-long annual conference,
originally
called BoostCon. More about this later.

Recently, Robert Ramey, a Boost library author, has built the Boost Library
Incubator30 to help C⁠+⁠+ programmers
produce Boost-quality libraries. The incubator offers advice and support for
authors and provides interested parties with the opportunity to examine code and
documentation of candidate libraries and leave comments and reviews. There are
currently over 20
libraries31 in the
incubator, all open to reviews and/or comments.

C⁠+⁠+ is an amazing tool for building high-quality libraries and frameworks, so
while the 125+ libraries in Boost are the most distributed (other than
the standard library), they only scratch the surface of the libraries and
frameworks available for C⁠+⁠+. There are publicly available lists of libraries
on Wikipedia32
and cppreference.com.33

Q&A

The Internet revolution has changed the practical experience of writing code in
any language. The combination of powerful public search engines and websites
with reference material and thousands of questions and answers dramatically
reduces the time lag between needing an answer about a particular language
feature, library call, or programming technique, and finding that answer.

The impact is disproportionately large for languages that are very complicated,
have a large user base (and therefore lots of online resources) or, like C⁠+⁠+,
both. Here are some online resources that C⁠+⁠+ programmers have found useful.

Nate Kohl noticed that there were some sites with useful references for other
languages,34 so in 2000, he
launched cppreference.com.35 Initially he posted
documentation as static content that he maintained himself. From the beginning,
there were some contributions from across the Internet, but in 2008, the
contribution interest was too much to be manageable, so he converted the site to
a wiki.

Kohl’s approach is to start with high-level descriptions and present increasing
detail that people can get into if they happen to be interested. His theory is
that examples are more useful to people trying to solve a problem quickly than
rigorous formal descriptions.

The wiki has the delightful feature that all the examples are compilable right
there on the website. You can modify the example and then run it to see the
result. Right there on the wiki!

As useful as documentation and examples are, some people learn better in a
question-and-answer format. In 2008, Stack Overflow36 launched as a
resource for programmers to get their questions answered. Stack Overflow allows
users to submit questions about all kinds of programming topics and currently
contains over 300,000 answered questions on C⁠+⁠+.

In order for a Q&A site to be useful, it needs to provide a good way to find the question
you are looking for, and high-quality answers. Your favorite Internet search
engine does pretty well with Stack Overflow, and the answers tend to be of high quality.
Post a question, and it might be answered by Jonathan Wakely, Howard Hinnant,
James McNellis, Dietmar Kühl, Sebastian Redl, Anthony Williams, Eric Niebler, or
Marshall Clow. These are the people that have built the libraries you are asking
about.

As useful as a Q&A site like Stack Overflow is, some people feel more comfortable in a more
traditional forum environment. Alex Allain, who wrote the book Jumping into C⁠+⁠+
[JIC] has built
cprogramming.com37 into a community site of
its own with references, tutorials, book reviews, tips, problems, quizes, and
several forums.

Of course, for those that like their Q&A retro style, some usernet groups still
exists for C⁠+⁠+:
comp.lang.c++,38
comp.lang.c++.moderated,39
and
comp.std.c++.40

As you’d expect of a language with a large user base, there are a lot of
Internet hangouts for learning about and discussing C⁠+⁠+. There are dozens of
blogs41 and
an active subreddit.42 Jens Weller
maintains a blog at Meeting C⁠+⁠+ called Blogroll that is a weekly list of the latest C⁠+⁠+ blogs.43

A special mention goes to the freenode.net ##C⁠+⁠+ IRC channel, members
of which are known for mercilessly tearing apart every snippet of code you might
care to show them. Funny how harsh critique makes good programmers. They also
take care of the channel’s pet, geordi, the friendliest C⁠+⁠+ evaluation bot
the world has ever known.

Conferences and Groups

Throughout the 2000s, the market for conference-going C⁠+⁠+ programmers was
largely served by SD West in the US and ACCU in Europe. Neither conference was
explicitly for C⁠+⁠+, but both attracted a lot of C⁠+⁠+ developers and content.

Beginning in 2010 and for every year since, Andrei Alexandrescu, Scott Meyers,
and Herb Sutter have worked together to produce C⁠+⁠+ and
Beyond.44 They’ve described it as a
“conference-like event” rather than a conference. We won’t quibble. These are
three-speaker, three-day events with advanced presentations by the authors of
some the most successful books on C⁠+⁠+.45 Registration is
limited46 to provide for more speaker-audience interaction. Most attendees
have over a decade of C⁠+⁠+ experience, are well informed about programming in
C⁠+⁠+, and value the opportunity for informal discussions with the speakers.

In 2006, Dave Abrahams and Beman Dawes started BoostCon, which was designed
to allow the Boost community to meet face to face and discuss ideas with each
other and
users. The intention was for content to be Boost Library-related, but serve a wider
audience than just the Boost Library developers. Over time, the content became a
little more mainstream, but it always focused on cutting-edge library
development, and attendance was never greater than 100.

While at BoostCon in May, 2011, Jon Kalb47 approached the conference planning committee
with the idea of making BoostCon more
mainstream. He argued that BoostCon,
while small, was very successful and had the potential to be the mainstream
C⁠+⁠+ conference of North America. Kalb proposed that BoostCon change its name
to something with C⁠+⁠+ in it, add
a third track, and grow the number of attendees. He pointed out that by the
next conference (May 2012), the new standard update would be
released, and there would be a lot of demand for sessions on C⁠+⁠+11. The new
track could be entirely made up of C⁠+⁠+11 tutorials. The planning
committee
accepted the ideas, and
C⁠+⁠+Now was born. Something must have been in the air, because C⁠+⁠+Now was
only one of three new C⁠+⁠+ conferences in 2012.

Late in 2011, Microsoft announced the first GoingNative conference for February
2012, about three months before the first C⁠+⁠+Now. This conference was
different from C⁠+⁠+Now in a number of ways, but was the same in one important
way.

Despite the fact that it was produced (and subsidized) by Microsoft, the content
was entirely about portable, standard C⁠+⁠+. It was larger, with probably about four
times as many attendees as BoostCon. It was shorter, lasting two days as opposed to a
week. GoingNative sessions were professionally live-streamed to the world,
instead of the “in-house” video recording done at BoostCon/C⁠+⁠+Now. Instead of
multiple tracks with sessions by speakers from across the community, GoingNative
had a single track filled entirely with “headliners.” Almost all of the
GoingNative 2012 speakers either had been BoostCon keynote speakers or would be
later be C⁠+⁠+Now keynoters.

C⁠+⁠+Now 2012 had three tracks,48 including one that was a C⁠+⁠+11 tutorial track.
Conference attendance jumped to 135 from 85 the previous year.

Jens Weller, inspired by attending C⁠+⁠+Now,
decided to create a similar conference for Europe in his
home country of Germany. The first Meeting C⁠+⁠+
conference49 was held in late 2012, and at 150
attendees, it was larger in its first year than C⁠+⁠+Now.

Weller has been an active C⁠+⁠+ evangelist,50 and Meeting C⁠+⁠+ has continued to
grow. It is now at four tracks and is expecting 400 attendees in 2015. Weller’s
influence has extended beyond the Meeting C⁠+⁠+ conference. He has launched
and is supporting several local Meeting C⁠+⁠+ user groups across
Europe.51

The list of C⁠+⁠+ user
groups52 includes
groups in South America as well as North America and Europe.

C⁠+⁠+Now 2013 reached the registration limit that planners had set at 150. The
Boost Steering Committee decided that instead of continuing to grow the
conference, it would cap attendance at 150 indefinitely. After this decision
was announced, Chandler Carruth,
treasurer of the Standard C⁠+⁠+ Foundation, spoke with Kalb about launching a new
conference under the auspices of the foundation.

Later, Carruth and Kalb would pitch this to Herb Sutter, the foundation’s chair
and president. He was instantly on board, and CppCon was born. The first CppCon
attracted almost 600 attendees to Bellevue, Washington in September of 2014. It
had six tracks featuring 80 speakers, 100 sessions, and a house band.
One of the ambitious goals of CppCon is to be the platform for discussion
about C⁠+⁠+ across the entire community. To further that goal, the conference
had its sessions professionally recorded and edited so that over 100 hours
of high-quality C⁠+⁠+ lectures are freely available.53

Videos

The CppCon session videos supplement an amazing amount of high-quality video
content on C⁠+⁠+. Most of the C⁠+⁠+ conferences mentioned earlier have
posted some or all of their sessions online free. The BoostCon YouTube
channel54 has sessions from both
BoostCon and C⁠+⁠+Now. Both Meeting
C⁠+⁠+55 and
CppCon56 have YouTube channels as
well.

Channel 9, Microsoft’s developer information channel, makes its videos available
in a wide variety of formats, including audio-only for listening on the go. In
addition to hosting the CppCon
videos,57 some
sessions from C⁠+⁠+ and Beyond in
201158 and
2012,59 all of the sessions
of the two GoingNative conferences in
201260 and
2013,61 and a number
of other videos on C⁠+⁠+,62 Channel 9
also has a series on C⁠+⁠+ that is called
C9::GoingNative.63

If your tastes or requirements run more toward formal training, there are some
good C⁠+⁠+ courses on both
pluralsight64 and
udemy.65

CppCast

Although there are lots of C⁠+⁠+ videos, there is relatively little
audio.66 This follows from
the fact that when discussing C⁠+⁠+, we almost always want to look at code,
which doesn’t work well with just audio. But audio does work for interviews, and
Rob Irving has launched CppCast,67 the only podcast
dedicated to C⁠+⁠+.

Books

There are hundreds of books on C⁠+⁠+, but in an era of instant Internet access
to thousands of technical sites and videos of almost every subjects, publishing
tech books is not the business that it once was, so the number of books with
coverage of the 2011 and/or 2014 releases is not large.

We should make the point that because of the backward compatibility of
standard updates, most of the information in classic C⁠+⁠+ books is still
largely valid. For example, consider what Scott Meyers has said about his classic book
Effective C⁠+⁠+ 68

Whether you’re programming in “traditional” C⁠+⁠+, “new” C⁠+⁠+, or some
combination of the two, then, the information and advice in this book should
serve you well, both now and in the
future.69

Still, using a quality book that is written with the current standard in mind
gives you confidence that there isn’t a better way to do something. Here are a
few classic C⁠+⁠+ books that have new editions updated to C⁠+⁠+11 or C⁠+⁠+14:

	
Bjarne Stroustrup has new editions of two of his books. Programming: Principles and Practice Using C⁠+⁠+, 2nd Edition
[PPPUC]
is a college-level textbook for teaching programming that just happens to use C⁠+⁠+. He has also updated his classic The C⁠+⁠+ Programming Language
[TCPL]
with a fourth edition. The overview portion of this book is available separately as A Tour of C⁠+⁠+
[ATOC],
a draft of which can be read online free at isocpp.org.70

	
Nicolai Josuttis has released a second edition of his classic, The C++ Standard Library: A Tutorial and Reference
[TCSL],
which covers C⁠+⁠+11.

	
Barbara Moo has updated the C++ Primer
[CP]
to a fifth edition that covers C⁠+⁠+11. The primer is a gentler introduction to C⁠+⁠+ than The C⁠+⁠+ Programming Language.

Here are a couple of books that are new, not updates of classic C⁠+⁠+ versions:

Scott Meyers’ Effective Modern C⁠+⁠+: 42 Specific Ways to Improve Your Use of C⁠+⁠+11 and C⁠+⁠+14
[EMC]
was one of the most eagerly awaited books in the community. An awful lot of
today’s C⁠+⁠+ programmers feel like the Effective C++ series was a formative
part of our C⁠+⁠+ education, and we’ve wanted to know for a long time what
Scott’s take on the new standard would be. Now we can find out.

Unlike the previously mentioned books, Anthony Williams’
C⁠+⁠+ Concurrency in Action: Practical Multithreading
[CCIA]
is not about C⁠+⁠+ generally, but just focuses on the new concurrency features
introduced in C⁠+⁠+11. The author is truly a concurrency expert. Williams has been the
maintainer of the Boost Thread library since 2006, and is
the developer of the just::thread implementation of the C⁠+⁠+11 thread library.
He also authored many of the papers that were the basis of the thread library in the
standard.

1 https://isocpp.org/std/the-committee
2 Note the weasel words “substantially” and “soon.” Complete and bug-free implementations of every feature aren’t the point here. The crux is that the community recognized that C⁠+⁠+11 was a real thing and the need to get on board right away.
3 We are looking at you, Python 3.0.
4 Or, in the case of some features, preceded.
5 The meeting where a new standard is officially voted to be a release is always highly attended. The first few meetings after that did see a bit of a drop, but soon the upward trend was clear.
6 https://isocpp.org/std/the-committee
7 https://www.biicode.com/
8 http://undo-software.com/
9 https://www.jetbrains.com/
10 https://www.jetbrains.com/clion/
11 https://www.jetbrains.com/resharper/
12 http://osv.io/
13 http://osv.io/frequently-asked-questions/
14 Consider Java, JavaScript, C#, Objective-C.
15 It gave the rights to the C⁠+⁠+ manual to the ISO. http://www.stroustrup.com/bs_faq.html#revenues
16 The only central organization for C⁠+⁠+ was the Standards Committee, but promoting the language was outside of its charter (and resources).
17 “Convener” is ISO speak for committee chair.
18 http://isocpp.org/about/
19 https://isocpp.org/faq
20 http://www.stroustrup.com/
21 The concept and term “FAQ” was invented by Usenet group moderators.
22 http://www.amazon.com/FAQs-2nd-Marshall-P-Cline/dp/0201309831/
23 https://isocpp.org/get-started
24 https://isocpp.org/wiki/faq/user-groups-worldwide
25 Follow @isocpp https://twitter.com/isocpp
26 https://isocpp.org/std
27 https://isocpp.org/forums
28 http://www.boost.org/doc/libs/
29 http://www.boost.org/community/gsoc.html
30 http://rrsd.com/blincubator.com/
31 http://rrsd.com/blincubator.com/alphabetically/
32 http://en.wikipedia.org/wiki/Category:C%2B%2B_libraries
33 http://en.cppreference.com/w/cpp/links/libs
34 Such as Sun’s early Java API reference site.
35 http://cppreference.com
36 http://stackoverflow.com/questions/tagged/c%2b%2b
37 http://cprogramming.com
38 https://groups.google.com/forum/!forum/comp.lang.c++.moderated
39 https://groups.google.com/forum/!forum/comp.lang.c++.moderated
40 https://groups.google.com/forum/#!forum/comp.std.c++
41 http://www.quora.com/What-are-the-best-blogs-on-C++
42 http://www.reddit.com/r/cpp/
43 http://meetingcpp.com/index.php/blogroll.html
44 http://cppandbeyond.com/
45 And D.
46 The registration limit has varied from 60 to 120, depending on the venue. The 2010 event was so popular an “encore” event was held a couple of months later.
47 The same.
48 BoostCon always had two tracks. Initially, the plan was that one track was for Boost Library developers and the other for users. Over time this distinction was lost, but the conference continued to have two tracks.
49 http://meetingcpp.com/
50 Weller also blogs regularly about the proposal papers for each standards meeting: http://meetingcpp.com/index.php/blog.html
51 http://meetingcpp.com/index.php/user-groups.html
52 https://isocpp.org/wiki/faq/user-groups-worldwide
53 After publishing the videos on YouTube, the conference received requests for an alternative from developers in countries where YouTube is blocked. So the conference asked Microsoft’s Channel 9 to host them as well.
54 https://www.youtube.com/user/Boostcon
55 https://www.youtube.com/user/MeetingCPP
56 https://www.youtube.com/user/CppCon
57 http://channel9.msdn.com/Events/CPP/C-PP-Con-2014
58 http://channel9.msdn.com/Tags/cppbeyond+2011
59 http://channel9.msdn.com/Tags/cppbeyond+2012
60 http://channel9.msdn.com/Events/GoingNative/GoingNative-2012
61 http://channel9.msdn.com/Events/GoingNative/2013
62 http://channel9.msdn.com/Tags/c++
63 http://channel9.msdn.com/Shows/C9-GoingNative
64 http://www.pluralsight.com/tag/c++
65 https://www.udemy.com/courses/search/?q=c%2B%2B
66 Although Channel 9 content is available as audio-only, this tends to work well only for panels and interviews.
67 http://cppcast.com/
68 http://www.amazon.com/Effective-Specific-Improve-Programs-Designs/dp/0321334876/
69 http://scottmeyers.blogspot.de/2011/03/effective-c-in-c0x-c11-age.html
70 https://isocpp.org/tour

Chapter 5. Digging Deep on Modern C⁠+⁠+

The power of the additional features that were introduced with the 2011 and 2014 updates
comes not just from the changes, but from the way these changes integrate with
classic features. This is the primary reason the update feels like a whole new
language, rather than a version of classic C⁠+⁠+ with a collection of new
features bolted on.

In this chapter, we will demonstrate what that means, which requires
looking at some code. Feel free to skip this chapter if your interest in C⁠+⁠+
is not as a coder.

Type Inference: Auto and Decltype

When a language supports type inference, it is often presented as just a
convenient way to not have to explicitly write out types. “The compiler already
knows the type—why should the programmer have to write it out?” Indeed, this
point of view is important. Oftentimes, the type is just visual clutter, as demonstrated by the definition and usage of c_v_s_iter in Example 5-1, which is written in a pre-C⁠+⁠+11 style.

Example 5-1. Type inference: visual type clutter

#include <algorithm>
#include <iostream>
#include <string>
#include <vector>

// trivial implementation of the unix uniq utility
// read lines from stdin
// write sorted unique lines to stdout
int main(int argc, char** argv) {
 using std::vector; using std::string; using std::sort;
 using std::unique; using std::cin; using std::cout;

 vector<string> lines;
 while (cin) {
 lines.emplace_back();
 getline(cin, lines.back());
 };

 sort(lines.begin(), lines.end());

 typedef typename vector<string>::const_iterator c_v_s_iter;
 c_v_s_iter const last = unique(lines.begin(), lines.end());
 lines.resize(last - lines.begin()); // keep only the result of
 // unique

 for (c_v_s_iter i = lines.begin(), e = lines.end(); i < e; ++i) {
 cout << (*i) << '\n';
 }
}

If this doesn’t seem like a big deal, it’s because it isn’t—in this case.
Still, it breaks the flow of reading code because of completely unnecessary
complications. One’s mind wonders if the equivalent Python would be
easier to read.

We can do better with a modern style.

Example 5-2. Type inference: less clutter

 sort(begin(lines), end(lines));
 auto const last = unique(begin(lines), end(lines));
 lines.resize(last - begin(lines)); // keep only the result of
 // unique

 for (auto const& line : lines) {
 cout << line << '\n';
 }

Once code becomes more complex, overflowing the programmer’s working memory,
one is grateful for the absence of unnecessary symbols.

However, type inference does not merely make things easier. In some cases, it
takes code from unthinkable1 to obvious.
For example, let’s implement it with boost::range.

Example 5-3. Type inference: complex iterator types

 sort(begin(lines), end(lines));
 for (auto const& line : lines | uniqued) {
 cout << line << '\n';
 }

The type uniqued returns is intractable at the least (especially over
multiple pipes of filtered, sliced, etc.), and moreover, the programmer
really does not care about what the iterator type is. The only relevant fact is that dereferencing it yields a string.2
The code therefore expresses intent without extraneous detail and without losing
a sliver of performance.

The addition of type inference does more than give the programmer another tool
for writing programs faster. It also fundamentally destroyed the last remnants
of the notion that type annotations are there for the compiler. Instead, the
types one actually writes out are a layer of assertions that the programmer
instructs the compiler to check, and clues to the reader. Writing auto means
that the type is unimportant; only its behavior, as defined by its usage, is important. Writing
the type out explicitly means the type has to be exactly what it says. Put
another way: types are henceforth always intentional, never circumstantial.

Put this way, it is trivial to recognize the missing element in this scenario:
auto means any type, and writing the type out explicitly means exactly
this type, or a type convertible to it. There is no way, however, to constrain
the type only partially. The family of solutions to this problem are called
concepts in C⁠+⁠+, but so far, the committee has not reached consensus on
important details of this feature. Getting it right the first time is important,
as is not breaking existing code, and so concepts have been left out of the standard
so far. The search for the ideal solution continues.

How Move Semantics Support Value-Semantic and Functional Programming

In the previous chapter, we indirectly explored the beautiful world of
procedural programming: std::sort and std::unique are algorithms that
mutate state passed to them. While this makes them wonderful building blocks for
procedural programs, they do not compose well with a more functional style of
programming.3

In C⁠+⁠+, writing in a functional style often came with a price of a
mandatory copy of a parameter.4
Consider the implementation of sorted and
uniqued as functions.

Example 5-4. Implementation of sorted

template <typename Container>
Container sorted(Container x) {
 std::sort(begin(x), end(x));
 return x;
}

Example 5-5. Implementation of uniqued

template <typename Container>
Container uniqued(Container x) {
 x.resize(std::unique(begin(x), end(x)) - begin(x));
 return x;
}

In classic C⁠+⁠+, the natural way of getting a vector of unique lines
uniqued(sorted(lines)) results in two (or three) expensive copies: first,
lines is copied to become sorted’s parameter, and then the return value
of sorted is copied to become uniqued’s parameter. Finally, the return
value of uniqued is copied into a variable in the local scope, should one
choose to store it.

In C⁠+⁠+⁠1⁠1, the two return values are moved instead5—in the case of
vector, only pointers to the internal structure are copied. The rationale
for moving return values instead of copying is that we know that the very next
thing that happens to the returned temporary object is destruction. This
well-chosen mechanism enabled us to get rid of two copies. But what about the
first copy of lines? We get rid of it using std::move, which instructs the compiler to treat its parameter as if it were an unnamed temporary.

Example 5-6. Getting rid of all copies

 lines = uniqued(sorted(std::move(lines)));

In the snippet, there are no copies at all. As a final step, the result is moved back into lines.6 This is just as
efficient as the procedural version, while the functions, as implemented,
supply all of the advantages of reasoning about code that come with a
pure-functional style.

The ranged for loop is as easy to write as it would be in Python,
but without performance loss.

Example 5-7. Ranged for loops can iterate over function return values

 for (auto const& line : uniqued(sorted(std::move(lines)))) {
 cout << line << '\n';
 }

No More Output Parameters

One of the problems classic C⁠+⁠+ inherited from C is that functions only return
a single value. While one could have, in fact, returned a std::pair,
boost::tuple, or other type defined simply to hold multiple values, it was
not commonly done in practice, in part because returning large objects
tended to be expensive if not done correctly,7 and in part because
returning objects just to unpack them in several following lines is rather
verbose.

The alternative was to use output parameters. One would create the objects
that would become a function’s return value before calling the function, and
then pass references to them to the function, which would assign values to them.

This is very efficient in execution, but not in programmer productivity. The output
parameters are indistinguishable from the input parameters of the function when
one is reading code, necessitating a thorough knowledge of exactly what the
function does to its parameters in order to reason about code. Output
parameters, consequently, were recognized as detracting from clarity.

The new tuple library, aided by move semantics to stay fast and lean, allows for
much improvement. Consider the case where one wants to calculate some statistics
of a sequence of numbers. We chose length, minimum and maximum, with the average
and variance left as an exercise for the reader.

Example 5-8. Compute the length, min, and max of the values

template <typename ConstInputIterator,
 typename MinMaxType =
 iterator_value_type<ConstInputIterator>>
auto lenminmax(ConstInputIterator first, ConstInputIterator last)
 -> std::tuple<size_t, MinMaxType, MinMaxType> {
 if (first == last) { return {0, 0, 0}; }
 size_t count{1};
 auto minimum(*first);
 auto maximum(minimum); // only evaluate *first once
 while (++first != last) {
 ++count;
 auto const value = *first;
 if (value < minimum) {
 minimum = value;
 } else if (maximum < value) {
 maximum = value;
 }
 }
 return {count, minimum, maximum};
}

The function returns three values, is as efficient as can be, and does not
mutate any external state.

The following example shows how to use it:

Example 5-9. Use the lenminmax function

 vector<int const> samples{5, 3, 6, 2, 4, 8, 9, 12, 3};
 int min, max;
 tie(ignore, min, max) = lenminmax(samples.begin(), samples.end());

 cout << "minimum: " << min << "\n"
 << "maximum: " << max << "\n";

Notice how we used tie to assign to min and max and ignore the length.

There is one more thing to consider: how did we discover the type of the tuple
that lenminmax returns? We seem to use the magical iterator_value_type to
infer the type the iterator returns.8 Logically, the type of minimum and maximum is whatever type
the iterator’s reference is: the type of *first.

We can get that type with decltype(*first). Still, that’s not quite right,
because *first returns a reference, and we need a value type. Fortunately,
there is a way to get rid of references in types:
std::remove_reference<T>::type. We just need to supply the type, which makes
std::remove_reference<decltype(*first)>::type. This is quite a mouthful, so
we would be better served if we could make a type alias for it. However, in the
type alias, we cannot use "first" because the name is not defined outside
of the function. Still, we need some kind of value inside the decltype to
dereference. Again, the standard library has what we need: declval<T>().
declval<T>() gives us a fictional reference to use inside decltype in
place of first. The result is in the next example.

Example 5-10. How to get the type of the value that any iterator points to

template <typename T>
using iterator_value_type = typename std::remove_reference<
 decltype(*std::declval<T>())>::type;

Now, we can just use it everywhere, like in the definition of the lenminmax
function.

Inner Functions with Lambdas

Sometimes, an algorithm requires an action to always be performed in a
particular way. Measurement is often such a thing. For instance, every time one
writes into an output iterator, one must increment it (see push in the next
example).

Merge sort is an algorithm that sorts a sequence of items by first splitting it
into already sorted subsequences9 and then merging them two by two into
successively longer sequences, until only one is left. The merge algorithm works
by comparing the heads of both input sequences and moving the smaller one to
the end of the output sequence. It repeats this process until both input
sequences have been consumed.

This is conceptually very simple. When writing the merge routine, it very
quickly crystallizes that we shall have to write two nearly identical pieces of
code — one for when the head of the first sequence is to be moved, and one for
the second sequence. However, with an inner function (advance), we can write
this piece of code once, and just call it twice, with the roles of both
sequences reversed.

Example 5-11. Using lambdas for inner functions to simplify algorithms

template <typename InputIterator1, typename InputIterator2,
 typename OutputIterator>
auto move_merge(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 OutputIterator&& out) -> OutputIterator {
 using std::move; using std::forward;

 auto drain = [&out](auto& first, auto& last){
 return move(first, last, forward<OutputIterator>(out));
 };
 auto push = [&out](auto& value) { *out = move(value); ++out; };
 auto advance = [&](auto& first_a, auto& last_a, auto& value_a,
 auto& first_b, auto& last_b, auto& value_b) {
 push(value_a);
 if (++first_a != last_a) {
 value_a = move(*first_a);
 return true;
 } else { // the sequence has ended. Drain the other one.
 push(value_b);
 out = drain(++first_b, last_b);
 return false;
 }
 };

 if (first1 == last1) { return drain(first2, last2); }
 else if (first2 == last2) { return drain(first1, last1); }
 auto value1(move(*first1));
 auto value2(move(*first2));
 for (bool not_done = true; not_done;) {
 if (value2 < value1) {
 not_done = advance(first2, last2, value2,
 first1, last1, value1);
 } else {
 not_done = advance(first1, last1, value1,
 first2, last2, value2);
 }
 }
 return out;
}

Also notice that we were able to give the part of the algorithm that drains the
final remaining sequence into the output sequence a name, even though the actual
implementation is only one line. Every part of the algorithm reads cleanly.

This is also a great example of the difference in style between inner functions
and regular functions. This much mutation, in-out parameters, etc., are extremely
poor style when designing function signatures, because the implementation might
be far from the point of use. In most contexts, in-out parameters cause higher
cognitive load for the programmer, making bugs and slowdowns more probable.

However, inner functions are not public, and their implementation is close at
hand—it is in the same scope! Here, in-out parameters do not cause higher
cognitive load. Instead, they help us understand that the algorithm has the same
structure for both branches after the comparison and make sure that it is in
fact the same both times.

We defined drain in order to omit the rather cumbersome forwarding syntax
from the call of move in order to make the names of the sequence iterators stand
out better where it is called.

The purpose of push is that output iterators have to be incremented every
time they are dereferenced, and some such iterators are rather heavy to copy. In
order to be able to use pre-increment, two lines are needed.

Finally, advance is the meat of the algorithm. The reason for its definition
is the aforementioned fact that, after we compare the heads of sequences and
thus determine which head to move, moving one head looks exactly the same as
moving the other.

Lambdas as a Scope with a Return Value

Lambda expressions can also be directly evaluated, finally allowing for some
logic in initializing references and variables that are not
default-constructible because they hold resources. Let’s take a look at a
very simple implementation of a multithreaded producer-consumer queue.

For performance in using synchronized data structures, one should release a lock
as soon as possible. At (1) in the next example, the element is returned as soon
as it has been popped off the queue; the function then ends, the lock is released,
and the element is processed afterward.

Example 5-12. Returning from a scope

 deque<int> queue;
 bool done = false;
 mutex queue_mutex;
 condition_variable queue_changed;

 thread producer([&]{
 for (int i = 0; i < 1000; ++i) {
 {
 unique_lock<mutex> lock{queue_mutex};
 queue.push_back(i);
 }
 // one must release the lock before notifying
 queue_changed.notify_all();
 } // end for
 {
 unique_lock<mutex> lock{queue_mutex};
 done = true;
 }
 queue_changed.notify_all();
 });
 thread consumer([&]{
 while (true) {
 auto maybe_data = [&]()->boost::optional<int>{ // (1)
 unique_lock<mutex> lock{queue_mutex};
 queue_changed.wait(lock,
 [&]{return done || !queue.empty();});
 if (!queue.empty()) {
 auto data = move(queue[0]);
 queue.pop_front();
 return boost::make_optional(move(data));
 }
 return {};
 }(); // release lock
 // do stuff with data!
 if (maybe_data) { std::cout << *maybe_data << '\n'; }
 else { break; }
 }
 });
 producer.join();
 consumer.join();

Most often, you will want to encapsulate this logic into a class, but it
is exceedingly hard to design general queuing interfaces that are nevertheless
fast in all scenarios. Sometimes, an ad hoc approach is exactly what is needed,
such as in a book, where the limit is a page. Without the gratuitous use of
lambda functions, this code would be longer and less clear.

1 While Boost has continualy proven that nothing is impossible (boost::bind comes to mind), for the vast majority of programmers, unthinkable is much the same thing as impossible.
2 Before C⁠+⁠+⁠1⁠1, one had to use std::copy to transfer the results into an output iterator, which in this case would be a std::ostream_iterator<string>(cout, "\n"), but this is inelegant and rather inflexible compared to just using a for loop, since writing output iterators for every purpose is rather involved, not to mention verbose.
3 In functional programming, functions do not modify global state or the state of their parameters. Computational results are exclusively captured by return values. https://wiki.haskell.org/Functional_programming
4 For performance-obsessed C⁠+⁠+ programmers, issues like this could make functional programming a nonstarter.
5 If the copy is not elided entirely. “Elided” is standard-speak for a copy omitted as unnecessary.
6 Should we have needed lines to be untouched, we would have assigned to a different variable and not used the move().
7 Return value optimization, while explicitly provisioned for by the standard, is not understood by the majority of programmers and is not applicable in all situations.
8 In the olden days, we would rely on iterator traits, which generated much confusion in teaching, and required library authors to provide them for their structures, which did not always happen.
9 Note that a sequence of zero or one items is, by definition, sorted.

Chapter 6. The Future of C⁠+⁠+

We don’t claim any particular gifts at seeing the future, but we can peak at
where the standard is going, and then we’ll point out some of the trends that we
see today that we think will continue to be important, perhaps even more
important in the future.

Setting the Standard

What will be in C⁠+⁠+17? Of course we won’t have a complete answer until it is
finished, but we can get a hint about where the language is going by looking at
what the committee is working on now. One clue is to look at the working groups
that were formed after the 2011 release and what they are working on.

The new groups include:

	Concurrency

	
Multithreading libraries have always been a part of C⁠+⁠+, but
only with the 2011 release has concurrency been part of the standard. But
concurrency is a huge topic, and only basic building blocks were provided in
C⁠+⁠+11/14. There is room for standard thread pool and other concurrency tools. This is
also the group that looks at vectorization and how to exploit GPUs, a much needed
enhancement to C⁠+⁠+.

	Modules

	
The header-based include model needs to be replaced by a system that
explicitly defines what a module wants to make public. This can support dramatically
faster builds and better encapsulation of libraries.

	File System

	
It currently isn’t possible to read the contents of a directory in
a standard portable way. This group is looking at the Boost FileSystem library.

	Networking (Inactive1)

	
Currently all networking done in C⁠+⁠+ (and there is a lot) is done
with nonportable libraries. It is time that networking is part of the standard.

	Transactional Memory

	
The future is concurrency, but “locks” don’t compose or
scale. Transactional memory is one possible
solution.2

	Numerics

	
Fortran is often seen as the language of choice for programs requiring
extensive numeric computations, particularly if matrixes are required. The Standards
Committee isn’t willing to cede this domain.

	Reflection

	
C⁠+⁠+ reflection is limited. It is likely to continue to be
restricted to compile time, but there are a lot of opportunities for improvement
even with this limitation.

	Concepts

	
Investigating how to define constraints on types used in generic
programming.

	Ranges

	
Investigating how to update the standard library with a range concept rather than
iterator pairs and how to extend this to include containers and range-based
algorithms.

	Feature Test

	
Standard features are rolled out as fast as tool vendors can
provide them. This group is looking at how to define a portable standard way
to check for the presence of new features.

	Databases (Inactive3)

	
Database-related library interfaces.

	Undefined and Unspecified Behavior

	
This group is reviewing all the areas that
the standard calls out as undefined or unspecified behavior in order to
recommend a set of changes to how these are called out.

	I/O

	
This group is looking into standardizing low-level graphic/pointing I/O
primitives.

One of the committee’s highest
priorities is backward compatibility. Any existing
standard-compliant code must continue to compile and mean the same thing
after any change to the standard.

The practical implication of this is that the committee (and the broader community)
must live forever with any errors in the standard.4 Any feature released in the standard will have code written
that relies on that feature as specified. If that feature was specified
incorrectly, correcting it in a subsequent standard would break existing code.
In general, proposals that break existing code are non-starters with the
committee.

Making this even more difficult is the fact that for some features, real-world
experience is the only good way to know the best way to specify the feature. To
address the problem, the committee is beginning to use technical
specifications (TS).5 A TS is way of releasing a set
of features (either core language, library, or both) that are considered
standard-candidate material.

Tool vendors can implement a TS and provide it to users as a non-standard
extension for experimental use. This allows the committee to gather real-world
user experience before adding the feature to the standard.

How well does this process work? Well, we don’t know yet.6 In order for the TS approach
to work, vendors must implement, and users must experiment with each TS
released.7 This seems very likely,
but only one TS has been released,8 and it is too early to
know how this will work out.

Here are the technical specifications that are currently in pipeline:

	File System

	
Work based on Boost.Filesystem v3, including file and directory
iteration.

	Library Fundamentals

	
A set of standard library extensions for vocabulary types
like optional<> and other fundamental utilities.

	Networking

	
A small set of network-related libraries including support for
network byte order transformation and URIs.

	Concepts

	
Extensions for template type checking.

	Arrays

	
Language and library extensions related to arrays, including
runtime-sized arrays and dynarray<>.

	Parallelism

	
Initially includes a Parallel STL library with support for
parallel algorithms to exploit multiple cores, and vectorizable algorithms to
exploit CPU and other vector units.

	Concurrency

	
Initially includes library support for executors and non-blocking
extensions to std::future. Additionally may include language extensions like
await, and additional libraries such as concurrent hash containers and latches.

	Transactional Memory

	
A promising way to deal with mutable shared memory that
is expected to be more usable and scalable than current techniques based on
atomics and mutexes.

There is absolutely no guarantee that any of these will be in the 2017
standard.9 But knowing that this is what the committee is working on gives
us a sense of its priorities and ambition for the evolving standard for C⁠+⁠+.

“Never Make Predictions, Especially About the Future” (Casey Stengel)

Stein’s Law is that trends that can’t continue won’t.10 The trick is to figure out
which trends will continue indefinitely. Here are some that we see.

Performance

Mobile and cloud computing has rekindled the interest in performance, and we think
performance will always be important. No computer will ever be powerful
or energy efficient enough that performance won’t matter, at least for some very
important applications. This looks good for a language that has always been
uncompromising in its approach to performance.

New Platforms

As the cost of hardware falls, more and more computing devices will be created.
These new devices will mean new environments, some with very tight memory
footprint requirements. This looks good for a highly portable systems language
with a “you don’t pay for what you don’t use” approach to features.

Scale

At the top end, the falling cost of hardware will lead to the design and
implementation of systems of a size that are difficult for us to imagine now. To
implement these systems, engineers are going to look for a language that scales
with additional users and teams and supports the creation of very large systems.
Such a language will need to have high performance, but also support the
high-level abstractions necessary to design systems at that scale. It will also
need as much compiler-aided bug-catching as possible, which is heavily aided by
an expressive type system that C⁠+⁠+ supports.

Software Ubiquity

Our world is going to be more and more one in which we are surrounded by
software. Will all of this software need to be highly portable, low-memory,
high-performance code? Of course not. There will be great demand for applications
that do not
require software to be pushed to the limit. But these applications will always
run on infrastructure where performance will be in demand. A lot of this
infrastructure is currently written in C, but when
infrastructure code requires high-level abstractions, that code is and will
usually be written in C⁠+⁠+.

It may be that the software industry as a whole will grow faster than the C⁠+⁠+
community and that shrinking market share may make C⁠+⁠+ appear to be less
important. But the fact is that high performance infrastructure makes it
possible to create applications in a less demanding programming environment.
More programmers working in high-level, nonsystems languages just increases the
demand for and value of the systems-programming projects that make their work
possible.

Powerful Tools

The philosophy of C⁠+⁠+ has been to rely more and more on a powerful compiler to do
the heavy lifting of making high-performance applications. At times, that has
pushed our compilers to the breaking point.11 We think this is the correct direction for tool
development: designing tools that let programmers focus on expressing their ideas
as clearly as possible, and let the tools do the hard work to implement these
ideas efficiently.

We will see the language definition evolve toward making more demands on the
compiler. We’ll also see more and more creative tools built with the Clang toolkit.

The world of computing technology can change quickly, dramatically, and
sometimes unexpectedly, but from where we sit, it looks like C⁠+⁠+ is going to
continue to play an important role for the foreseeable future.

1 Its work is complete.
2 http://research.cs.wisc.edu/trans-memory/
3 Currently handled directly by Library Evolution working group.
4 We are looking at you, vector<bool>.
5 The difference between an ISO Technical Report, of which the Committee released one in 2005, and an ISO Technical Specification, which will be used by the Committee going forward, is not very interesting. The TR1 should probably have been released as a TS.
6 It worked well with the TR1 from 2005 that was incorporated into the 2011 release with some minor changes. But that was library-only, and almost all of it was already implemented and in wide usage as Boost libraries.
7 The approach will also fail if users embrace the TS in such a way that it becomes a de facto standard of its own.
8 File System
9 There is not even any guarantee that next standard will be released in 2017.
10 “If something cannot go on forever, it will stop." — Herbert Stein
11 Early users of code that pushed the envelope on templates sometimes found that their compilers seemed to grind to a halt. Advances in compiler technology and computing power generally overcame this limitation.

Bibliography

[JIC] Allain, Alex. Jumping into C++. Cprogramming.com, 2013 (ISBN:
9780988927803)

[TCSL] Josuttis, Nicolai. The C++ Standard Library: A Tutorial and Reference. 2nd ed. Addison-Wesley Professional (ISBN: 9780201543308)

[CP] Lippman, Stanley, Josée Lajoie, Barbara Moo. C++ Primer. 5th ed. Addison-Wesley Professional, 2012 (ISBN: 9780321714114)

[EMC] Meyers, Scott. Effective Modern C++. O’Reilly Media Inc., 2014 (ISBN: 9781491903995)

[FM2G] Stepanov A. A. and D. E. Rose. From Mathematics to Generic Programming. Pearson Education, 2014 (ISBN: 9780133491784)

[DEC] Stroustrup, Bjarne. The Design and Evolution of C++. Addison-Wesley Professional, 1994 (ISBN: 9780201543308)

[TCPL] Stroustrup, Bjarne. The C++ Programming Language. 4th ed. Addison-Wesley Professional, 2013 (ISBN: 9780321563842)

[PPPUC] Stroustrup, Bjarne. Programming: Principles and Practice Using C++. 2nd ed. Addison-Wesley Professional, 2014 (ISBN: 9780321992789)

[ATOC] Stroustrup, Bjarne. A Tour of C++ Addison-Wesley Professional, 2013 (ISBN: 9780321958310)

[CCIA] Williams, Anthony. C++ Concurrency in Action: Practical Multithreading. Manning Publications, 2012 (ISBN: 9781933988771)

About the Authors

Jon Kalb does on-site training on C++ best practices and advanced topics. He is an Approved Outside Training Vendor for Scott Meyers’ training materials and is an award-winning conference speaker. For information on course content, dates, and rates, please email jon@cpp.training.

Jon has been programming in C++ for two and a half decades. He is currently working on Amazon’s search engine at A9.com. During the last 25 years, he has written C++ for Amazon, Apple, Dow Chemical, Intuit, Lotus, Microsoft, Netscape, Sun, Yahoo!, and a number of companies that you’ve not heard of.

Gašper Ažman is an undercover mathematician masquerading as a software engineer. On his quest to express ideas precisely, concisely, and with great care for simplicity, he likes to study emerging programming languages for new tricks to apply in his C++. He is currently taking a hiatus from teaching to work on the Amazon search engine at A9.com. In his free time, he makes music and bread.

About the Cover

The image on the cover is a Japanese artist’s1 illustration of an ancient Chinese legend about an Old Master who asked his disciples to describe a language that he gave them. The first student said, this language is an improvement on portable assembler. The next student said, this is a language for constructing beautiful libraries. Another student said, no, this language is for constructing hierarchies of objects. No, said the next student, this language is for expressing mathematical functions in the real world. You’ve missed its power, said another, it is for expressing generic truths about any type...

And as the students argued on, the Old Master smiled to himself.

1 Hanabusa Itchō

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/toc01.html
		Preface

		1. The Nature of the Beast

		C⁠+⁠+: What’s It Good For?

		High-Level Abstractions at Low Cost

		Low-Level Access When You Need It

		Wide Range of Applicability

		Highly Portable

		Better Resource Management

		Industry Dominance

		2. The Origin Story

		C: Portable Assembler

		C with High-Level Abstractions

		The ’90s: The OOP Boom, and a Beast Is Born

		The 2000s: Java, the Web, and the Beast Nods Off

		3. The Beast Wakes

		Technology Evolution: Performance Still Matters

		Language Evolution: Modernizing C⁠+⁠+

		Tools Evolution: The Clang Toolkit

		Library Evolution: The Open Source Advantage

		4. The Beast Roars Back

		WG21

		Tools

		Standard C⁠+⁠+ Foundation

		Boost: A Library and Organization

		Q&A

		Conferences and Groups

		Videos

		CppCast

		Books

		5. Digging Deep on Modern C⁠+⁠+

		Type Inference: Auto and Decltype

		How Move Semantics Support Value-Semantic and Functional Programming

		No More Output Parameters

		Inner Functions with Lambdas

		Lambdas as a Scope with a Return Value

		6. The Future of C⁠+⁠+

		Setting the Standard

		“Never Make Predictions, Especially About the Future” (Casey Stengel)

		Performance

		New Platforms

		Scale

		Software Ubiquity

		Powerful Tools

		Bibliography

OEBPS/DejaVuSans-Bold.otf

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/orm_front_cover.jpg
OREILLY®

(++
Today

The Beast is Back

Jon Kalb & Gasper AZzman

OEBPS/ad_final_ebook.png
A Power Language
Needs Power Tools

We at JetBrains have spent the ast decade and a half helpin developers
code better faster,with inellgent products e Itel IDEA,ReSharper and
VouTrack, Fnaly, you too have a C++ development tool that you deserve:

+ Rely on sae Cr+ code refactorings to have all usages updated
throughout the whole code base

+ Generate functions and constructors instantly

+ Improve code quality with on-the-fy code analysi and quickfises

i a e ol oryou
"o jebramscomicpn JetBRAINS

