
The Beast is Back

C++
Today

Jon Kalb & Gašper Ažman

Compliments of

https://www.jetbrains.com/cpp/?utm_source=oreilly&utm_medium=print&utm_content=cpp-report&utm_campaign=cpp

Jon Kalb & Gašper Ažman

C++ Today
The Beast Is Back

978-1-491-93166-0

[LSI]

C++ Today
by Jon Kalb and Gašper Ažman

Copyright © 2015 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com .

Editors: Rachel Roumeliotis and Katie
Schooling
Production Editor: Shiny Kalapurakkel

Proofreader: Amanda Kersey
Interior Designer: David Futato
Cover Designer: Karen Montgomery

May 2015: First Edition

Revision History for the First Edition
2015-05-04: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C++ Today, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://safaribooksonline.com

Table of Contents

Preface. v

1. The Nature of the Beast. 1
C++: What’s It Good For? 2

2. The Origin Story. 11
C: Portable Assembler 11
C with High-Level Abstractions 12
The ’90s: The OOP Boom, and a Beast Is Born 13
The 2000s: Java, the Web, and the Beast Nods Off 15

3. The Beast Wakes. 21
Technology Evolution: Performance Still Matters 21
Language Evolution: Modernizing C++ 23
Tools Evolution: The Clang Toolkit 26
Library Evolution: The Open Source Advantage 28

4. The Beast Roars Back. 31
WG21 31
Tools 33
Standard C++ Foundation 34
Boost: A Library and Organization 36
Q&A 37
Conferences and Groups 39
Videos 41
CppCast 42
Books 43

iii

5. Digging Deep on Modern C++. 45
Type Inference: Auto and Decltype 45
How Move Semantics Support Value-Semantic and

Functional Programming 48
No More Output Parameters 49
Inner Functions with Lambdas 52
Lambdas as a Scope with a Return Value 54

6. The Future of C++. 57
Setting the Standard 57
Never Make Predictions, Especially About the Future 61

Bibliography. 65

iv | Table of Contents

Preface

This book is a view of the C++ world from two working software
engineers with decades of combined experience programming in
this industry. Of course this view is not omniscient, but is filled with
our observations and opinions. The C++ world is vast and our space
is limited, so many areas, some rather large, and others rather inter‐
esting, have been omitted. Our hope is not to be exhaustive, but to
reveal a glimpse of a beast that is ever-growing and moving fast.

v

1 When we refer to the C++ language, we mean to include the accompanying standard
library. When we mean to refer to just the language (without the library), we refer to it
as the core language.

CHAPTER 1

The Nature of the Beast

In this book we are referring to C++ as a “beast.” This isn’t from any
lack of love or understanding; it comes from a deep respect for the
power, scope, and complexity of the language,1 the monstrous size of
its installed base, number of users, existing lines of code, developed
libraries, available tools, and shipping projects.

For us, C++ is the language of choice for expressing our solutions in
code. Still, we would be the first to admit that users need to mind
the teeth and claws of this magnificent beast. Programming in C++
requires a discipline and attention to detail that may not be required
of kinder, gentler languages that are not as focused on performance
or giving the programmer ultimate control over execution details.
For example, many other languages allow programmers the oppor‐
tunity to ignore issues surrounding acquiring and releasing mem‐
ory. C++ provides powerful and convenient tools for handling
resources generally, but the responsibility for resource management
ultimately rests with the programmer. An undisciplined approach
can have disastrous consequences.

Is it necessary that the claws be so sharp and the teeth so bitey? In
other popular modern languages like Java, C#, JavaScript, and
Python, ease of programming and safety from some forms of

1

2 Though some C++ hobbyists go beyond most professional programmers’ day-to-day
usage.

3 http://www.stroustrup.com/bs_faq.html#number-of-C++-users

programmer error are a high priority. But in C++, these concerns
take a back seat to expressive power and performance.

Programming makes for a great hobby, but C++ is not a hobbyist
language.2 Software engineers don’t lose sight of programming ease
of use and maintenance, but when designing C++, nothing has or
will stand in the way of the goal of creating a truly general-purpose
programming language that can be used in the most demanding
software engineering projects.

Whether the demanding requirements are high performance, low
memory footprint, low-level hardware control, concurrency, high-
level abstractions, robustness, or reliable response times, C++ must
be able to do the job with reasonable build times using industry-
standard tool chains, without sacrificing portability across hardware
and OS platforms, compatibility with existing libraries, or readabil‐
ity and maintainability.

Exposure to the teeth and claws is not just the price we pay for this
power and performance—sometimes, sharp teeth are exactly what
you need.

C++: What’s It Good For?
C++ is in use by millions3 of professional programmers working on
millions of projects. We’ll explore some of the features and factors
that have made C++ the language of choice in so many situations.
The most important feature of C++ is that it is both low- and high-
level. Due to that, it is able to support projects of all sizes, ensuring a
small prototype can continue scaling to meet ever-increasing needs.

High-Level Abstractions at Low Cost
Well-chosen abstractions (algorithms, types, mechanisms, data
structures, interfaces, etc.) greatly simplify reasoning about pro‐
grams, making programmers more productive by not getting lost in
the details and being able to treat user-defined types and libraries as
well-understood and well-behaved building blocks. Using them,

2 | Chapter 1: The Nature of the Beast

http://www.stroustrup.com/bs_faq.html#number-of-C++-users

4 For instance, one can (and people do) use virtual functions in C, but few will contest
that p→vtable→foo(p) is clearer than p→foo().

5 Notable peers are the D programming language, Rust, and, to a lesser extent, Google
Go, albeit with a much smaller installed base.

developers are able to conceive of and design projects of much
greater scope and vision.

The difference in performance between code written using high-
level abstractions and code that does the same thing but is written at
a much lower level4 (at a greater burden for the programmer) is
referred to as the “abstraction penalty.”

As an example: C++ introduced an I/O model based on streams.
The streams model offers an interface that is, in the common case,
slightly slower than using native operating system calls. However, in
most cases, it is fast enough that programmers choose the superior
portability, flexibility, and type-safety of streams to faster but less-
friendly native calls.

C++ has features (user-defined types, type templates, algorithm
templates, type aliases, type inference, compile-time introspection,
runtime polymorphism, exceptions, deterministic destruction, etc.)
that support high-level abstractions and a number of different high-
level programming paradigms. It doesn’t force a specific program‐
ming paradigm on the user, but it does support procedural, object-
based, object-oriented, generic, functional, and value-semantic
programming paradigms and allows them to easily mix in the same
project, facilitating a tailored approach for each part.

While C++ is not the only language that offers this variety of
approaches, the number of languages that were also designed to
keep the abstraction penalty as low as possible is far smaller.5 Bjarne
Stroustrup, the creator of C++, refers to his goal as “the zero-
overhead principle,” which is to say, no abstraction penalty.

A key feature of C++ is the ability of programmers to create their
own types, called user-defined types (UDTs), which can have the
power and expressiveness of built-in types or fundamentals. Almost
anything that can be done with a fundamental type can also be done
with a user-defined type. A programmer can define a type that func‐
tions as if it is a fundamental data type, an object pointer, or even as
a function pointer.

C++: What’s It Good For? | 3

6 Being a superset of C also enhances the ability of C++ to interoperate with other lan‐
guages. Because C’s string and array data structures have no memory overhead, C has
become the “connecting” interface for all languages. Essentially all languages support
interacting with a C interface and C++ supports this as a native subset.

C++ has so many features for making high-quality, easy to use libra‐
ries that it can be thought of as a language for building libraries.
Libraries can be created that allow users to express themselves in a
natural syntax and still be powerful, efficient, and safe. Libraries can
be designed that have type-specific optimizations and to automati‐
cally clean up resources without explicit user calls.

It is possible to create libraries of generic algorithms and user-
defined types that are just as efficient or almost as efficient as code
that is not written generically.

The combination of powerful UDTs, generic programming facilities,
and high-quality libraries with low abstraction penalties make pro‐
gramming at a much higher level of abstraction possible even in
programs that require every last bit of performance. This is a key
strength of C++.

Low-Level Access When You Need It
C++ is, among other things, a systems-programming language. It is
capable of and designed for low-level hardware control, including
responding to hardware interrupts. It can manipulate memory in
arbitrary ways down to the bit level with efficiency on par with
hand-written assembly code (and, if you really need it, allows inline
assembly code). C++, from its initial design, is a superset of C,6

which was designed to be a “portable assembler,” so it has the dex‐
terity and memory efficiency to be used in OS kernels or device
drivers.

One example of the kind of control offered by C++ is the flexibility
available for where user-defined types can be created. Most high-
level languages create objects by running a construction function to
initialize the object in memory allocated from the heap. C++ offers
that option, but also allows for objects to be created on the stack.
Programmers have little control over the lifetime of objects created
on the stack, but because their creation doesn’t require a call to the
heap allocator, stack allocation is typically orders of magnitude
faster. Due to its limitations, stack-based object allocation can’t be a

4 | Chapter 1: The Nature of the Beast

7 http://www.drdobbs.com/parallel/eliminate-false-sharing/217500206
8 For a small sample of applications and operating systems written in C++: http://

www.stroustrup.com/applications.html

general replacement for heap allocation, but in those cases where
stack allocation is acceptable, C++ programmers win by avoiding
the allocator calls.

In addition to supporting both heap allocation and stack allocation,
C++ allows programmers to construct objects at arbitrary locations
in memory. This allows the programmer to allocate buffers in which
many objects can be very efficiently created and destroyed with
great flexibility over object lifetimes.

Another example of having low-level control is in cache-aware cod‐
ing. Modern processors have sophisticated caching characteristics,
and subtle changes in the way the data is laid out in memory can
have significant impact on performance due to such factors as look-
ahead cache buffering and false sharing.7 C++ offers the kind of
control over data memory layout that programmers can use to avoid
cache line problems and best exploit the power of hardware. Man‐
aged languages do not offer the same kind of memory layout flexi‐
bility. Managed language containers do not hold objects in
contiguous memory, and so do not exploit look-ahead cache buffers
as C++ arrays and vectors do.

Wide Range of Applicability
Software engineers are constantly seeking solutions that scale. This
is no less true for languages than for algorithms. Engineers don’t
want to find that the success of their project has caused it to outgrow
its implementation language.

Very large applications and large development teams require lan‐
guages that scale. C++ has been used as the primary development
language for projects with hundreds of engineers and scores of
modules.8 Its support for separate compilation of modules makes it
possible to create projects where analyzing and/or compiling all the
project code at once would be impractical.

A large application can absorb the overhead of a language with a
large runtime cost, either in startup time or memory usage. But to
be useful in applications as diverse as device drivers, plug-ins, CGI

C++: What’s It Good For? | 5

http://www.drdobbs.com/parallel/eliminate-false-sharing/217500206
http://www.stroustrup.com/applications.html
http://www.stroustrup.com/applications.html

9 “An incomplete list of C++ compilers”: http://www.stroustrup.com/compilers.html
10 C++ is supported on iOS, Android, Windows Mobile, and BlackBerry: http://visualstu

diomagazine.com/articles/2013/02/12/future-c-plus-plus.aspx

modules, and mobile apps, it is necessary to have as little overhead
as possible. C++ has a guiding philosophy of “you only pay for what
you use.” What that means is that if you are writing a device driver
that doesn’t use many language features and must fit into a very
small memory footprint, C++ is a viable option, where a language
with a large runtime requirement would be inappropriate.

Highly Portable
C++ is designed with a specific hardware model in mind, and this
model has minimalistic requirements. This has made it possible to
port C++ tools and code very broadly, as machines built today, from
nanocomputers to number-crunching behemoths, are all designed
to implement this hardware model.

There are one or more C++ tool chains available on almost all com‐
puting platforms.9 C++ is the only high-level language alternative
available on all of the top mobile platforms.10

Not only are the tools available, but it is possible to write portable
code that can be used on all these platforms without rewriting.

With the consideration of tool chains, we have moved from lan‐
guage features to factors outside of the language itself. But these fac‐
tors have important engineering considerations. Even a language
with perfect syntax and semantics wouldn’t have any practical value
if we couldn’t build it for our target platform.

In order for an engineering organization to seriously consider sig‐
nificant adoption of a language, it needs to consider availability of
tools (including analyzers and other non-build tools), experienced
engineers, software libraries, books and instructional material, trou‐
bleshooting support, and training opportunities.

Extra-language factors, such as the installed user base and industry
support, always favor C++ when a systems language is required and
tend to favor C++ when choosing a language for building large-scale
applications.

6 | Chapter 1: The Nature of the Beast

http://www.stroustrup.com/compilers.html
http://visualstudiomagazine.com/articles/2013/02/12/future-c-plus-plus.aspx
http://visualstudiomagazine.com/articles/2013/02/12/future-c-plus-plus.aspx

11 It would be hard to over-emphasize how costly these problems have been in non-
garbage collected languages.

Better Resource Management
In the introduction to this chapter, we discussed that other popular
languages prioritize ease of programming and safety over perfor‐
mance and control. Nothing is a better example of the differences
between these languages and C++ than their approaches to memory
management.

Most popular modern languages implement a feature called garbage
collection, or GC. With this approach to memory management, the
programmer is not required to explicitly release allocated memory
that is no longer needed. The language runtime determines when
memory is “garbage” and recycles it for reuse. The advantages to this
approach may be obvious. Programmers don’t need to track mem‐
ory, and “leaks” and “double dispose” problems11 are a thing of the
past.

But every design decision has trade-offs, and GC is no exception.
One issue with it is that collectors don’t recognize that memory has
become garbage immediately. The recognition that memory needs
to be released will happen at some unspecified future time (and for
some, implementations may not happen at all—if, for example, the
application terminates before it needs to recycle memory).

Typically, the collector will run in the background and decide when
to recycle memory outside of the programmer’s control. This can
result in the foreground task “freezing” while the collector recycles.
Since memory is not recycled as soon as it is no longer needed, it is
necessary to have an extra cushion of memory so that new memory
can be allocated while some unneeded memory has not yet been
recycled. Sometimes the cushion size required for efficient operation
is not trivial.

An additional objection to GC from a C++ point of view is that
memory is not the only resource that needs to be managed. Pro‐
grammers need to manage file handles, network sockets, database
connections, locks, and many other resources. Although we may not
be in a big hurry to release memory (if no new memory is being
requested), many of these other resources may be shared with other

C++: What’s It Good For? | 7

12 It may also stand for Responsibility Acquisition Is Initialization when the concept is
extended beyond just resource management.

processes and need to be released as soon as they are no longer
needed.

To deal with the need to manage all types of resources and to release
them as soon as they can be released, best-practice C++ code relies
on a language feature called deterministic destruction.

In C++, one way that objects are instantiated by users is to declare
them in the scope of a function, causing the object to be allocated in
the function’s stack frame. When the execution path leaves the func‐
tion, either by a function return or by a thrown exception, the local
objects are said to have gone out of scope.

When an object goes out of scope, the runtime “cleans up” the
object. The definition of the language specifies that objects are
cleaned up in exactly the reverse order of their creation (reverse
order ensures that if one object depends on another, the dependent
is removed first). Cleanup happens immediately, not at some unspe‐
cified future time.

As we pointed out earlier, one of the key building blocks in C++ is
the user-defined type. One of the options programmers have when
defining their own type is to specify exactly what should be done to
“clean up” an object of the defined type when it is no longer needed.
This can be (and in best practice is) used to release any resources
held by the object. So if, for example, the object represents a file
being read from or written to, the object’s cleanup code can auto‐
matically close the file when the object goes out of scope.

This ability to manage resources and avoid resource leaks leads to a
programming idiom called RAII, or Resource Acquisition Is Initiali‐
zation.12 The name is a mouthful, but what it means is that for any
resource that our program needs to manage, from file handles to
mutexes, we define a user type that acquires the resource when it is
initialized and releases the resource when it is cleaned up.

To safely manage a particular resource, we just declare the appropri‐
ate RAII object in the local scope, initialized with the resource we
need to manage. The resource is guaranteed to be cleaned up exactly
once, exactly when the managing object goes out of scope, thus solv‐

8 | Chapter 1: The Nature of the Beast

13 http://www.lextrait.com/vincent/implementations.html
14 Independent software vendors, the people that sell commercial applications for money.

Like the creators of Office, Quicken, and Photoshop.

ing the problems of resource leaks, dangling pointers, double relea‐
ses, and delays in recycling resources.

Some languages address the problem of managing resources (other
than memory) by allowing programmers to add a finally block to
a scope. This block is executed whenever the path of execution
leaves the function, whether by function return or by thrown excep‐
tion. This is similar in intent to deterministic destruction, but with
this approach, every function that uses an object of a particular
resource managing type would need to have a finally block added
to the function. Overlooking a single instance of this would result in
a bug.

The C++ approach, using RAII, has all the convenience and clarity
of a garbage-collected system, but makes better use of resources, has
greater performance and flexibility, and can be used to manage
resources other than memory. Generalizing resource management
instead of just handling memory is a strong advantage of this
approach over garbage collection and is the reason that most C++
programmers are not asking that GC be added to the language.

Industry Dominance
C++ has emerged as the dominant language in a number of diverse
product categories and industries.13 What these domains have in
common is either a need for a powerful, portable systems-
programming language or an application-programming language
with uncompromising performance. Some domains where C++ is
dominant or near dominant include search engines, web browsers,
game development, system software and embedded computing,
automotive, aviation, aerospace and defense contracting, financial
engineering, GPS systems, telecommunications, video/audio/image
processing, networking, big science projects, and ISVs.14

C++: What’s It Good For? | 9

http://www.lextrait.com/vincent/implementations.html

1 http://cm.bell-labs.co/who/dmr/chist.html

CHAPTER 2

The Origin Story

This may be old news to some readers, and is admittedly a C++-
centric telling, but we want to provide a sketch of the history of C++
in order to put its recent resurgence in perspective.

The first programming languages, such as Fortran and Cobol, were
developed to allow a domain specialist to write portable programs
without needing to know the arcane details of specific machines.

But systems programmers were expected to master such details of
computer hardware, so they wrote in assembly language. This gave
programmers ultimate power and performance at the cost of porta‐
bility and tedious detail. But these were accepted as the price one
paid for doing systems programming.

The thinking was that you either were a domain specialist, and
therefore wanted or needed to have low-level details abstracted from
you, or you were a systems programmer and wanted and needed to
be exposed to all those details. The systems-programming world was
ripe for a language that allowed to you ignore those details except
when access to them was important.

C: Portable Assembler
In the early 1970s, Dennis Ritchie introduced “C,”1 a programming
language that did for systems programmers what earlier high-level

11

http://cm.bell-labs.co/who/dmr/chist.html

languages had done for domain specialists. It turns out that systems
programmers also want to be free of the mind-numbing detail and
lack of portability inherent in assembly-language programming, but
they still required a language that gave them complete control of the
hardware when necessary.

C achieved this by shifting the burden of knowing the arcane details
of specific machines to the compiler writer. It allowed the C pro‐
grammer to ignore these low-level details, except when they mat‐
tered for the specific problem at hand, and in those cases gave the
programmer the control needed to specify details like memory lay‐
outs and hardware details.

C was created at AT&T’s Bell Labs as the implementation language
for Unix, but its success was not limited to Unix. As the portable
assembler, C became the go-to language for systems programmers
on all platforms.

C with High-Level Abstractions
As a Bell Labs employee, Bjarne Stroustrup was exposed to and
appreciated the strengths of C, but also appreciated the power and
convenience of higher-level languages like Simula, which had lan‐
guage support for object-oriented programming (OOP).

Stroustrup realized that there was nothing in the nature of C that
prevented it from directly supporting higher-level abstractions such
as OOP or type programming. He wanted a language that provided
programmers with both elegance when expressing high-level ideas
and efficiency of execution size and speed.

He worked on developing his own language, originally called C
With Classes, which, as a superset of C, would have the control and
power of portable assembler, but which also had extensions that
supported the higher-level abstractions that he wanted from Simula.
[DEC]

The extensions that he created for what would ultimately become
known as C++ allowed users to define their own types. These types
could behave (almost) like the built-in types provided by the lan‐
guage, but could also have the inheritance relationships that sup‐
ported OOP.

12 | Chapter 2: The Origin Story

2 http://www.open-std.org/jtc1/sc22/wg21/
3 Most language creators retain control of their creation or give them to standards bodies

and walk away. Stroustrup’s continuing to work on C++ as part of the ISO is a unique
situation.

He also introduced templates as a way of creating code that could
work without dependence on specific types. This turned out to be
very important to the language, but was ahead of its time.

The ’90s: The OOP Boom, and a Beast Is Born
Adding support for OOP turned out to be the right feature at the
right time for the ʽ90s. At a time when GUI programming was all the
rage, OOP was the right paradigm, and C++ was the right imple‐
mentation.

Although C++ was not the only language supporting OOP, the tim‐
ing of its creation and its leveraging of C made it the mainstream
language for software engineering on PCs during a period when PCs
were booming.

The industry interest in C++ became strong enough that it made
sense to turn the definition of the language over from a single indi‐
vidual (Stroustrup) to an ISO (International Standards Organiza‐
tion) Committee.2 Stroustup continued to work on the design of the
language and is an influential member of the ISO C++ Standards
Committee to this day.3

In retrospect, it is easy to see that OOP, while very useful, was over-
hyped. It was going to solve all our software engineering problems
because it would increase modularity and reusability. In practice,
reusability goes up within specific frameworks, but these frame‐
works introduce dependencies, which reduce reusability between
frameworks.

Although C++ supported OOP, it wasn’t limited to any single para‐
digm. While most of the industry saw C++ as an OOP language and
was building its popularity and installed base using object frame‐
works, others where exploiting other C++ features in a very differ‐
ent way.

The ’90s: The OOP Boom, and a Beast Is Born | 13

http://www.open-std.org/jtc1/sc22/wg21/

Alex Stepanov was using C++ templates to create what would even‐
tually become known as the Standard Template Library (STL). Ste‐
panov was exploring a paradigm he called generic programming.

Generic programming is “an approach to programming that focuses
on designing algorithms and data structures so that they work in the
most general setting without loss of efficiency.” [FM2G]

Although the STL was a departure from every other library at the
time, Andrew Koenig, then the chair of the Library Working Group
for the ISO C++ Standards Committee, saw the value in it and invi‐
ted Stepanov to make a submission to the committee. Stepanov was
skeptical that the committee would accept such a large proposal
when it was so close to releasing the first version of the standard.
Koenig asserted that Stepanov was correct. The committee would
not accept it…if Stepanov didn’t submit it.

Stepanov and his team created a formal specification for his library
and submitted it to the committee. As expected, the committee felt
that it was an overwhelming submission that came too late to be
accepted.

Except that it was brilliant!

The committee recognized that generic programming was an
important new direction and that the STL added much-needed
functionality to C++. Members voted to accept the STL into the
standard. In its haste, it did trim the submission of a number of fea‐
tures, such as hash tables, that it would end up standardizing later,
but it accepted most of the library.

By accepting the library, the committee introduced generic pro‐
gramming to a significantly larger user base.

In 1998, the committee released the first ISO standard for C++. It
standardized “classic” C++ with a number of nice improvements
and included the STL, a library and programming paradigm clearly
ahead of its time.

One challenge that the Library Working Group faced was that it was
tasked not to create libraries, but to standardize common usage. The
problem it faced was that most libraries were either like the STL (not
in common use) or they were proprietary (and therefore not good
candidates for standardization).

14 | Chapter 2: The Origin Story

4 http://www.boost.org/users/proposal.pdf
5 http://boost.org/
6 https://sfconservancy.org/

Also in 1998, Beman Dawes, who succeeded Koenig as Library
Working Group chair, worked with Dave Abrahams and a few other
members of the Library Working Group to set up the Boost Libra‐
ries.4 Boost is an open source, peer-reviewed collection of C++ libra‐
ries,5 which may or may not be candidates for inclusion in the
standard.

Boost was created so that libraries that might be candidates for
standardization would be vetted (hence the peer reviews) and popu‐
larized (hence the open source).

Although it was set up by members of the Standards Committee
with the express purpose of developing candidates for standardiza‐
tion, Boost is an independent project of the nonprofit Software
Freedom Conservancy.6

With the release of the standard and the creation of Boost.org, it
seemed that C++ was ready to take off at the end of the ʽ90s. But it
didn’t work out that way.

The 2000s: Java, the Web, and the Beast
Nods Off
At over 700 pages, the C++ standard demonstrated something about
C++ that some critics had said about it for a while: C++ is a compli‐
cated beast.

The upside to basing C++ on C was that it instantly had access to all
libraries written in C and could leverage the knowledge and famili‐
arity of thousands of C programmers.

But the downside was that C++ also inherited all of C’s baggage. A
lot of C’s syntax and defaults would probably be done very differ‐
ently if it were being designed from scratch today.

Making the more powerful user-defined types of C++ integrate with
C so that a data structure defined in C would behave exactly the
same way in both C and C++ added even more complexity to the
language.

The 2000s: Java, the Web, and the Beast Nods Off | 15

http://www.boost.org/users/proposal.pdf
http://boost.org/
https://sfconservancy.org/

7 “Build once, run anywhere,” while still often not the case with Java, is sometimes much
more useful for deployment than the “write once, build anywhere” type of portability of
C++.

The addition of a streams-based input/output library made I/O
much more OOP-like, but meant that the language now had two
complete and completely different I/O libraries.

Adding operator overloading to C++ meant that user-defined types
could be made to behave (almost) exactly like built-in types, but it
also added complexity.

The addition of templates greatly expanded the power of the lan‐
guage, but at no small increase in complexity. The STL was an exam‐
ple of the power of templates, but was a complicated library based
on generic programming, a programming paradigm that was not
appreciated or understood by most programmers.

Was all this complexity worth it for a language that combined the
control and performance of portable assembler with the power and
convenience of high-level abstractions? For some, the answer was
certainly yes, but the environment was changing enough that many
were questioning this.

The first decade of the 21st century saw desktop PCs that were pow‐
erful enough that it didn’t seem worthwhile to deal with all this com‐
plexity when there were alternatives that offered OOP with less
complexity.

One such alternative was Java.

As a bytecode interpreted, rather than compiled, language, Java
couldn’t squeeze out all the performance that C++ could, but it did
offer OOP, and the interpreted implementation was a powerful fea‐
ture in some contexts.7

Because Java was compiled to bytecode that could be run on a Java
virtual machine, it was possible for Java applets to be downloaded
and run in a web page. This was a feature that C++ could only
match using platform-specific plug-ins, which were not nearly as
seamless.

So Java was less complex, offered OOP, was the language of the Web
(which was clearly the future of computing), and the only downside

16 | Chapter 2: The Origin Story

8 Java’s “references” can be null, and can be re-bound, so they are pointers; you just can’t
increment them.

was that it ran a little more slowly on desktop PCs that had cycles to
spare. What’s not to like?

Java’s success led to an explosion of what are commonly called man‐
aged languages. These compile into bytecode for a virtual machine
with a just-in-time compiler, just like Java. Two large virtual
machines emerged from this explosion. The elder, Java Virtual
Machine, supports Java, Scala, Jython, Jruby, Clojure, Groovy, and
others. It has an implementation for just about every desktop and
server platform in existence, and several implementations for some
of them. The other, the Common Language Interface, a Microsoft
virtual machine, with implementations for Windows, Linux, and OS
X, also supports a plethora of languages, with C#, F#, IronPython,
IronRuby, and even C++/CLI leading the pack.

Colleges soon discovered that managed languages were both easier
to teach and easier to learn. Because they don’t expose the full power
of pointers8 directly to programmers, it is less elegant, and some‐
times impossible, to do some things that a systems programmer
might want to do, but it also avoids a number of nasty programming
errors that have been the bane of many systems programmers’ exis‐
tence.

While things were going well for Java and other managed languages,
they were not going so well for C++.

C++ is a complicated language to implement (much more than C,
for example), so there are many fewer C++ compilers than there are
C compilers. When the Standards Committee published the first
C++ standard in 1998, everyone knew that it would take years for
the compiler vendors to deliver a complete implementation.

The impact on the committee itself was predictable. Attendance at
Standards Committee meetings fell off. There wasn’t much point in
defining an even newer version of the standard when it would be a
few years before people would begin to have experience using the
current one.

About the time that compilers were catching up, the committee
released the 2003 standard. This was essentially a “bug fix” release

The 2000s: Java, the Web, and the Beast Nods Off | 17

9 http://accu.org/index.php/aboutus

with no new features in either the core language or the standard
library.

After this, the committee released the first and only C++ Technical
Report, called TR1. A technical report is a way for the committee to
tell the community that it considers the content as standard-
candidate material.

The TR1 didn’t contain any change to the core language, but defined
about a dozen new libraries. Almost all of these were libraries from
Boost, so most programmers already had access to them.

After the release of the TR1, the committee devoted itself to releas‐
ing a new update. The new release was referred to as “0x” because it
was obviously going to be released sometime in 200x.

Only it wasn’t. The committee wasn’t slacking off—they were adding
a lot of new features. Some were small nice-to-haves, and some were
groundbreaking. But the new standard didn’t ship until 2011. Long,
long overdue.

The result was that although the committee had been working hard,
it had released little of interest in the 13 years from 1998 to 2011.

We’ll use the history of one group of programmers, the ACCU, to
illustrate the rise and fall of interest in C++. In 1987, The C Users
Group (UK) was formed as an informal group for those who had an
interest in the C language and systems programming. In 1993, the
group merged with the European C++ User Group (ECUG) and
continued as the Association of C and C++ Users.

By the 2000s, members were interested in languages other than C
and C++, and to reflect that, the group changed its name to just the
initials ACCU. Although the group is still involved in and support‐
ing C++ standardization, its name no longer stands for C++, and
members are also exploring other languages, especially C#, Java,
Perl, and Python.9

18 | Chapter 2: The Origin Story

http://accu.org/index.php/aboutus

By 2010, C++ was still in use by millions of engineers, but the
excitement of the ʽ90s had faded. There had been over a decade with
few enhancements released by the Standards Committee. Colleges
and the cool kids were defecting to Java and managed languages. It
looked like C++ might just turn into another legacy-only beast like
Cobol.

But instead, the beast was just about to roar back.

The 2000s: Java, the Web, and the Beast Nods Off | 19

CHAPTER 3

The Beast Wakes

In this chapter and the next, we are going to be exploring the factors
that drove interest back to C++ and the community’s response to
this growing interest. However, we’d first like to point out that, par‐
ticularly for the community responses, this isn’t entirely a one-way
street. When a language becomes more popular, people begin to
write and talk about it more. When people write and talk about a
language more, it generates more interest.

Debating the factors that caused the C++ resurgence versus the fac‐
tors caused by it isn’t the point of this book. We’ve identified what
we think are the big drivers and the responses, but let’s not forget
that these responses are also factors that drive interest in C++.

Technology Evolution: Performance Still
Matters
Performance has always been a primary driver in software develop‐
ment. The powerful desktop machines of the 2000s didn’t signal a
permanent change in our desire for performance; they were just a
temporary blip.

Although powerful desktop machines continue to exist and will
remain very important for software development, the prime targets
for software development are no longer on the desk (or in your lap).
They are in your pocket and in the cloud.

21

1 C++ is not necessarily the recommended language on mobile platforms but is supported
in one way or another.

2 http://perspectives.mvdirona.com/2010/09/overall-data-center-costs/

Modern mobile devices are very powerful computers in their own
right, but they have a new concern for performance: performance per
watt. For a battery-powered mobile device, there is no such thing as
spare cycles.

Earlier we pointed out that C++ is the only high-level language
available1 for all mobile devices running iOS, Android, or Windows.
Is this because Apple, which adopted Objective-C and invented
Swift, is a big fan of C++? Is it because Google, which invented Go
and Dart, is a big fan of C++? Is it because Microsoft, which inven‐
ted C#, is a big fan of C++? The answer is that these companies want
their devices to feature apps that are developed quickly, but are
responsive and have long battery life. That means they need to offer
developers a language with high-level abstraction features (for fast
development) and high performance. So they offer C++.

Cloud-based computers, that is, computers in racks of servers in
some remote data center, are also powerful computers, but even
there we are concerned about performance per watt. In this case, the
concern isn’t dead batteries, but power cost. Power to run the
machines, and power to cool them.

The cloud has made it possible to build enormous systems spanning
hundreds, thousands, or tens of thousands of machines bound to a
single purpose. A modest improvement in speed at those scales can
represent substantial savings in infrastructure costs.

James Hamilton, a vice president and distinguished engineer on the
Amazon Web Services team, reported on a study he did of modern
high-scale data centers.2 He broke the costs down into (in decreasing
order of significance) servers, power distribution & cooling, power,
networking equipment, and other infrastructure. Notice that the top
three categories are all directly related to software performance,
either performance per hardware investment or performance per
watt. Hamilton determined that 88% of the costs are dependent on
performance. A 1% performance improvement in code will almost
produce a 1% cost savings, which for a data center at scale will be a
significant amount of money.

22 | Chapter 3: The Beast Wakes

http://perspectives.mvdirona.com/2010/09/overall-data-center-costs/

3 To the extent that such languages are being used for prototyping, to bring features to
market quickly, or for software that doesn’t need to run at scale, there is still a role for
these languages. But it isn’t in data centers at scale.

4 And much appreciated. In a 2015 survey, Stack Overflow found that C++11 was the
second “most loved” language of its users (after newcomer Swift). http://stackover
flow.com/research/developer-survey-2015

5 https://isocpp.org/tour

For companies with server farms the size of Amazon, Facebook,
Google, or Microsoft, not using C++ is an expensive alternative.

But how is this different from how computing in large enterprise
companies has always been done? Look again at the list of expense
categories. Programmers and IT professionals are not listed. Did
Hamilton forget them? No. Their cost is in the noise. Managed lan‐
guages that have focused on programmer productivity at the
expense of performance are optimizing for a cost not found in the
modern scaled data center.3

Performance is back to center stage, and with it is an interest in C++
for both cloud and mobile computing. For mobile computing, the
“you only pay for what you use” philosophy and the ability to run in
a constrained memory environment are additional wins. For cloud
computing, the fact that C++ is highly portable and can run effi‐
ciently and reliably on a wide variety of low-cost hardware are addi‐
tional wins, especially because one can tune directly for the
hardware one owns.

Language Evolution: Modernizing C++
In 2011, the first major revision to Standard C++ was released, and
it was very clear that the ISO Committee had not been sitting on its
hands for the previous 13 years. The new standard was a major
update to both the core language and the standard library.4

The update, which Bjarne Stroustrup, the creator of C++, reported
“feels like a new language,”5 seemed to offer something for everyone.
It had dozens of changes, some small and some fundamental, but
the most important achievement was that C++ now had the features
programmers expected of a modern language.

The changes were extensive. The page count of the ISO Standard
went from 776 for the 2003 release to 1,353 for the 2011 release. It

Language Evolution: Modernizing C++ | 23

http://stackoverflow.com/research/developer-survey-2015
http://stackoverflow.com/research/developer-survey-2015
https://isocpp.org/tour

6 http://en.wikipedia.org/wiki/C%2B%2B11

isn’t our purpose here to catalogue them all. Other references are
available for that.6 Instead, we’ll just give some idea about the kinds
of changes.

One of the most important themes of the release was simplifying the
language. No one would like to “tame the beast” of its complexity
more than the Standards Committee. The challenge that the com‐
mittee faces is that it can’t remove anything already in the standard
because that would break existing code. Breaking existing code is a
nonstarter for the committee.

It may not seem possible to simplify by adding to an already compli‐
cated specification, but the committee found ways to do exactly that.
It addressed some minor annoyances and inconsistencies, and
added the ability to have the compiler deduce types in situations
where the programmer used to have to spell them out explicitly. It
added a new version of the “for” statement that would automatically
iterate over containers and other user-defined types.

It made enumeration and initialization syntax more consistent, and
added the ability to create functions that take an arbitrary number
of parameters of a specified type.

It has always been possible in C++ to define user-defined types that
can hold state and be called like functions. However, this ability has
been underutilized because the syntax for creating user-defined
types for this purpose was verbose, was hardly obvious, and as such
added some inconvenient overhead. The new language update intro‐
duced a new syntax for defining and instantiating function objects
(lambdas) to make them convenient to use. Lambdas can also be
used as closures, but they do not automatically capture the local
scope—the programmer has to specify what to capture explicitly.

The 2011 update added better support for character sets, in particu‐
lar, better support for Unicode. It standardized a regular expression
library (from Boost via the TR1) and added support for “raw” liter‐
als that makes working with regular expressions easier.

The standard library was significantly revised and extended. Almost
all of the libraries defined in the TR1 were incorporated into the
standard. Types that were already defined in the standard library,

24 | Chapter 3: The Beast Wakes

http://en.wikipedia.org/wiki/C%2B%2B11

7 Implemented as templated using aliases.
8 Through a plethora of new type-traits and subtle corrections to the SFINAE rules. Sub‐

stitution Failure is not an Error is an important rule for finding the correct template to
instantiate, when more than one appears to match initially. It allows for probing for
capabilities of types, since using a capability that isn’t offered will just try a different
template.

such as STL containers, were updated to reflect new core language
features; and new containers, such as a singly-linked list and hash-
based associative containers, were added.

All of these features were additions to the language specification, but
had the effect of making the language simpler to learn and use for
everyday programming.

Reflecting that C++ is a language for library building, a number of
new features made life easier for library authors. The update intro‐
duced language support for “perfect forwarding.” Perfect forwarding
refers to the ability of a library author to capture a set of parameters
to a function and “forward” these to another function without
changing anything about the parameters. Boost library authors had
demonstrated that this was achievable in classic C++, but only with
great effort and language mastery.

Now, mere mortals can implement libraries using perfect forward‐
ing by taking advantage of a couple of features new in the 2011
update: variadic templates and rvalue references.

A richer type system allows better modeling of requirements that
can be checked at compile time, catching wide classes of bugs auto‐
matically. The tighter the type system models the problem, the
harder it is for bugs to slip through the cracks. It also often makes it
easier for compilers to prove additional invariants, enabling better
automatic code optimization. New features aimed at library builders
included better support for type functions.7

Better support for compile-time reflection of types8 enables library
writers to adapt their libraries to wide varieties of user types, using
the optimal algorithms for the capabilities the user’s objects expose
without additional burden on the users of the library.

The update also broke ground in some new areas. Writing multi‐
threaded code in C++ has been possible, but only with the use of
platform-specific libraries. With the concurrency support intro‐

Language Evolution: Modernizing C++ | 25

9 C, C++, Objective-C, and Objective-C++

duced in the 2011 update, it is now possible to write multithreaded
code and libraries in a portable way.

This update also introduced move semantics, which Scott Meyers
referred to as the update’s “marquee feature.” Avoiding unnecessary
copies is a constant challenge for programmers who are concerned
about performance, which C++ programmers almost always are.
Because of the power and flexibility of “classic” C++, it has always
been possible to avoid unnecessary copies, but sometimes this was at
the cost of code that took longer to write, was less readable, and was
harder to reuse.

Move semantics allow programmers to avoid unnecessary copies
with code that is straightforward in both writing and reading. Move
semantics are a solution to an issue (unnecessary copies) that C++
programmers care about, but is almost unnoticed in other language
environments.

This isn’t a book on how to program. Our goal is to talk about C++,
not teach it. But we can’t help ourselves, we want to show what
modern C++ really means, so if you are interested in code examples
of how C++ is evolving, don’t skip Chapter 5, Digging Deep on
Modern C++.

As important as it was to have a new standard, it wouldn’t have had
any meaningful impact if there were no tools that implemented it.

Tools Evolution: The Clang Toolkit
Due to its age and the size of its user base, there are many tools for
C++ on many different platforms. Some are proprietary, some are
free, some are open source, some are cross-platform. There are too
many to list, and that would be out of scope for us here. We’ll dis‐
cuss a few interesting examples.

Clang is the name of a compiler frontend for the C family of lan‐
guages.9 Although it was first released in 2007, and its code genera‐
tion reached production quality for C and Objective-C later that
decade, it wasn’t really interesting for C++ until this decade.

26 | Chapter 3: The Beast Wakes

10 For some CPUs and/or code cases, it has caught up or passed its competitors.
11 Some examples comparing error messages from Clang with old and newer versions of

GCC: https://gcc.gnu.org/wiki/ClangDiagnosticsComparison

Clang is interesting to the C++ community for two reasons. The
first is that it is a new C++ compiler. Due to its wide feature-set and
a few syntactic peculiarities that make it very hard to parse, new
C++ frontends don’t come along everyday. But more than just being
an alternative, its value lay in its much more helpful error messages
and significantly faster compile times.

As a newer compiler, Clang is still catching up with older compilers
on the performance of generated code10 (which is usually of primary
consideration for C++ programmers). But its better build time and
error messages increase programmer productivity. Some developers
have found a best-of-both-worlds solution by using Clang for the
edit-build-test-debug cycle, but build production releases with an
older compiler. For developers using GCC, this is facilitated by
Clang’s desire to be “drop in” compatible with GCC. Clang brought
some helpful competition to the compiler space, making GCC also
improve significantly. This competition is benefiting the community
immensely.

One result of the complexity of C++ is that compile-time error mes‐
sages can sometimes be frustratingly inscrutable, particularly where
templates are involved. Clang established its reputation as a C++
compiler by generating error messages that were more understanda‐
ble and more useful to programmers. The impact that Clang’s error
messages have had on the industry can be seen in how much other
compilers have improved their own.11

The second reason that Clang is interesting to the C++ community
is because it is more than just a compiler; it is an open source toolkit
that is itself implemented in high-quality C++. Clang is factored to
support the building of development tools that “understand” C++.

Clang contains a static analysis framework, which the clang-tidy
tool uses. Writing additional checkers for the framework is quite
simple. Using the Clang toolkit, programmers can build dynamic
analyzers, source-to-source translators, refactoring tools, or make
any number of other kinds of tools.

Tools Evolution: The Clang Toolkit | 27

https://gcc.gnu.org/wiki/ClangDiagnosticsComparison

12 http://clang.llvm.org/docs/AddressSanitizer.html
13 http://clang.llvm.org/docs/MemorySanitizer.html
14 http://clang.llvm.org/docs/LeakSanitizer.html
15 http://clang.llvm.org/docs/ThreadSanitizer.html
16 https://metashell.readthedocs.org/en/latest/
17 http://lcamtuf.coredump.cx/afl/
18 https://dxr.readthedocs.org/en/latest/
19 Clang and its standard library implementation, libc++, are usually the first compiler

and library to implement new C++ features.

There are a number of dynamic analyzers that come built into
Clang: AddressSanitizer,12 MemorySanitizer,13 LeakSanitizer,14 and
ThreadSanitizer.15 The compile time flag -fdocumentation will look
for Doxygen-style comments and warn you if the code described
doesn’t match the comments.

Metashell16 is an interactive environment for template metaprog‐
ramming. American fuzzy lop17 is a security-oriented fuzzer that
uses code-coverage information from the binary under test to guide
its generation of test cases. Mozilla has built a source code indexer
for large code bases called DXR.18

Over time, the performance of Clang’s generated code will improve,
but the importance of that will pale compared to the impact on the
community of the tools that will be built from the Clang toolkit.
We’ll see more and more tools for understanding, improving, and
verifying code as well as have a platform for trying out new core lan‐
guage features.19

Library Evolution: The Open Source Advantage
The transition to a largely open source world has benefited C++ rel‐
ative to managed languages, but especially Java. This came from two
sources. First, shipping source code further improved runtime-
performance of C++; and second, the availability of source reduced
the advantage of Java’s “build once, run anywhere” deployment
story, since “write once, build for every platform” became viable.

The model used by most proprietary libraries was for the library
vendor to ship library headers and compiled object files to applica‐
tion developers. Among the implications of this are the fact that this
limits the portability options available to application developers.

28 | Chapter 3: The Beast Wakes

http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/MemorySanitizer.html
http://clang.llvm.org/docs/LeakSanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html
https://metashell.readthedocs.org/en/latest/
http://lcamtuf.coredump.cx/afl/
https://dxr.readthedocs.org/en/latest/

20 The JIT has the ability to see the entire application. This allows for optimizations that
would not be possible to a compiler linking to compiled library object files. Today’s
C++ compilers use link-time (or whole-program) optimization features to achieve
these optimizations. This requires that object files be compiled to support this feature.
On the other hand, the JIT compiler was hampered by the very dynamic nature of Java,
which forbade most of the optimizations the C++ compiler can do.

Library vendors can’t provide object files for every possible hard‐
ware/OS platform combination, so inevitably practical limits pre‐
vented applications from being offered on some platforms because
required libraries were not readily available.

Another implication is that library vendors, again for obvious prac‐
tical reasons, couldn’t provide library object files compiled with
every combination of compiler settings. This would mean the final
application was almost always suboptimal in the way that their libra‐
ries were compiled.

One particular issue here is processor-specific compilation. Pro‐
cessor families have a highly compatible instruction set that all new
processors support for backward compatibility. But new processors
often add new instructions to enable their new features. Processors
also vary greatly in their pipeline architectures, which can make
code that performs well on one processor less desirable on another.
Compiling for a specific processor is therefore highly desirable.

This fact had worked in Java’s favor. Earlier we referred to Java as an
interpreted language, which is true to a first approximation, but
managed languages are implemented with a just-in-time compiler
that can enhance performance over what would be possible by
strictly interpreting bytecode.20 One way that the JIT can enhance
performance is to compile for the actual processor on which it is
running.

A C++ library provider would tend to provide a library object com‐
piled to the “safe,” highly-compatible instruction set, rather than
have to supply a number of different object files, one for each possi‐
ble processor. Again, this would often result in suboptimal perfor‐
mance.

But we no longer live in a world dominated by proprietary libraries.
We live in an open source world. The success and influence of the
Boost libraries contributed to this, but the open source movement
has been growing across all languages and platforms. The fact that

Library Evolution: The Open Source Advantage | 29

libraries are now available as source code means that developers can
target any platform with any compiler and compiler options that
they choose, and support optimizations that require the source.

Cloud computing only reinforces this advantage. In a cloud com‐
puting scenario, developers can target their own hardware with cus‐
tom builds that free the compiler to optimize for the particular
target processor.

Closed-source libraries also forced library vendors to eschew the use
of templates, instead relying on runtime dispatch and object-
oriented programming, which is slower and harder to make type-
safe. This effectively barred them from using some of the most
powerful features of C++. These days, vending template libraries
with barely any compiled objects is the norm, which tends to make
C++ a much more attractive proposition.

30 | Chapter 3: The Beast Wakes

1 https://isocpp.org/std/the-committee

CHAPTER 4

The Beast Roars Back

In this chapter, we’ll discuss a number of C++ resources, most of
which are either new or have been revitalized in the last few years.
Of course this isn’t an exhaustive list. Google and Amazon are your
friends.

WG21
Our first topic is the ISO Committee for C++ standardization,
which at 25 years old, is hardly a new resource, but it certainly glows
with new life. The committee is formally called ISO/IEC JTC1 (Joint
Technical Committee 1) / SC22 (Subcommittee 22) / WG21 (Work‐
ing Group 21).1 Now you know why most people just call it the C++
Standards Committee.

As big an accomplishment as it is to release a new or updated major
standard like C++98 or C++11, it doesn’t have much practical
impact if there are no tools that implement it. As mentioned earlier,
this was a significant issue with the release of the standard in 1998.
Committee attendance fell off because implementation was under‐
stood to be years away.

But this was not the case for the release in 2011. Tool vendors had
been tracking the standard as it was being developed. Although it
called for significant changes to both the core language and the stan‐

31

https://isocpp.org/std/the-committee

2 Note the weasel words “substantially” and “soon.” Complete and bug-free implementa‐
tions of every feature aren’t the point here. The crux is that the community recognized
that C++11 was a real thing and the need to get on board right away.

3 We are looking at you, Python 3.0.
4 Or, in the case of some features, preceded.
5 The meeting where a new standard is officially voted to be a release is always highly

attended. The first few meetings after that did see a bit of a drop, but soon the upward
trend was clear.

6 https://isocpp.org/std/the-committee

dard library, the new update was substantially implemented by a
couple of different open source implementations, GCC and Clang,
soon after its release.2 Other tool vendors had also demonstrated
their commitment to the update. Unlike some language updates,3

this was clearly adopted by the entire community as the path for‐
ward.

The psychological impact of this should not be underestimated.
Thirteen years is a very long time in the world of programming lan‐
guages. Some people had begun to think of C++ as an unchanging
definition, like chess or Latin. The update changed the perception of
C++ from a dying monster of yesteryear into a modern, living crea‐
ture.

The combination of seeing C++ as a living creature, and one where
implementations closely followed4 standardization, meant that
Standards Committee meeting attendance began to increase.5

The committee reformulated itself6 to put the new members to the
best use. It had long been formed of a set of subcommittees called
working groups. There were Core, Library, and Evolution working
groups; but with many new members and so many areas in which
the industry is asking for standardization, new working groups were
the answer. The Committee birthed over a dozen new “Domain Spe‐
cific Investigation & Development” groups.

The first new product of the committee was a new standard in 2014.
C++14 was not as big a change as C++11, but it did significantly
improve some of the new features in C++11 by filling in the gaps
discovered with real-world experience using these new features.

The target for the next standard release is 2017. The working groups
are busy reviewing and developing suggestions that may or may not
become part of the next update.

32 | Chapter 4: The Beast Roars Back

https://isocpp.org/std/the-committee

7 https://www.biicode.com/
8 http://undo-software.com/
9 https://www.jetbrains.com/

10 https://www.jetbrains.com/clion/

The existence of a vital Standards Committee that is engaged with
the language users, tool vendors, and educators is a valuable
resource. Actively discussing and debating possible features is a
healthy process for the entire community.

In Chapter 6, The Future of C++, we’ll discuss more about the work‐
ing groups and what they are working on.

Tools
Clang is clearly the most significant new development in the C++
toolchain, but the resurgence of interest in C++ has brought more
than just Clang to the community. We’ll discuss a few interesting
newcomers.

biicode7 is a cross-platform dependency manager that you can use to
download, configure, install, and manage publicly available libraries,
like the Boost libraries. This is old-hat for other languages, but this
is new technology for C++. The site only hit 1.0 in the middle of
2014 and is still in beta, but it has thousands of users and has been
growing aggressively.

Undo Software8 has a product called UndoDB, which is a reversible
debugger. The idea of a reversible debugger, one that supports step‐
ping backward in time, is so powerful that it has been implemented
many times. The problem with previous implementations is that
they run so slowly and require so much data collection that they
aren’t practical for regular use. Undo has found a way to increase the
speed and reduce the data requirements so that the approach is
practical for the first time. This product isn’t C++ only, but its mar‐
keting is focused on the C++ community.

JetBrains9 has built its reputation on IDEs with strong refactoring
features and has over a dozen products for developers. But until
launching CLion10 in 2015, it’s not had a C++ product. CLion is a
cross-platform IDE for C and C++ with support for biicode. CLion
can be used on Windows, but for developers that use Microsoft’s

Tools | 33

https://www.biicode.com/
http://undo-software.com/
https://www.jetbrains.com/
https://www.jetbrains.com/clion/

11 https://www.jetbrains.com/resharper/
12 http://osv.io/
13 http://osv.io/frequently-asked-questions/
14 Consider Java, JavaScript, C#, Objective-C.
15 It gave the rights to the C++ manual to the ISO. http://www.stroustrup.com/

bs_faq.html#revenues
16 The only central organization for C++ was the Standards Committee, but promoting

the language was outside of its charter (and resources).

Visual Studio for C++ development, JetBrains is updating
ReSharper,11 its VS extension, which supports C#, .NET, and web-
development languages to also support C++.

The last tool that we’ll mention isn’t a development tool, but a
deployment tool. OSv12 is an operating system written in C++ that is
optimized for use in the cloud. By rethinking the requirements of a
virtual machine existing in the cloud, Cloudius Systems has created
an OS with reduced memory and CPU overhead and lightweight
scheduling. Why was this implemented in C++ instead of C? It turns
out that gets asked a lot:

While C++ has a deserved reputation for being incredibly compli‐
cated, it is also incredibly rich and flexible, and in particular has a
very flexible standard library as well as add-on libraries such as
boost. This allows OSV code to be much more concise than it
would be if it were written in C, while retaining the close-to-the-
metal efficiency of C.13

—OSv FAQ

Standard C++ Foundation
Many languages14 are either created by or adopted by a large com‐
pany that considers the adoption of the language by others a strate‐
gic goal and so markets and promotes the language. Although
AT&T was supportive of C++,15 it never “marketed” the language to
encourage adoption by external developers.

Various tool vendors and publishers have promoted C++ tools or
books, but until this decade, no organization16 has marketed C++
itself. This didn’t seem to be an impediment to the growth and
acceptance of the language. But in 2010, as the committee was about
to release the largest update to the standard since it was created,

34 | Chapter 4: The Beast Roars Back

https://www.jetbrains.com/resharper/
http://osv.io/
http://osv.io/frequently-asked-questions/
http://www.stroustrup.com/bs_faq.html#revenues
http://www.stroustrup.com/bs_faq.html#revenues

17 “Convener” is ISO speak for committee chair.
18 http://isocpp.org/about/
19 https://isocpp.org/faq
20 http://www.stroustrup.com/
21 The concept and term “FAQ” was invented by Usenet group moderators.
22 http://www.amazon.com/FAQs-2nd-Marshall-P-Cline/dp/0201309831/

23 https://isocpp.org/get-started
24 https://isocpp.org/wiki/faq/user-groups-worldwide

interest in C++ had noticeably increased. The time seemed ripe for a
central place for C++-related information.

At least it seemed like a good idea to Herb Sutter, the Standards
Committee’s Convener.17 Sutter wanted to build an organization that
would promote C++ and be independent of (but supported by) the
players in the C++ community. With their support, he was able to
launch the Standard C++ Foundation18 and http://isocpp.org in late
2012.

In addition to serving as a single feed for all C++-related news, the
website also became the home for the “C++ Super-FAQ.”19 The
Super-FAQ acquired its name because it is the merger of two of the
largest FAQs in C++.

Bjarne Stroustrup, as the language’s creator, was the target of count‐
less, often repetitive questions, so he had created a large FAQ on his
personal website.20

The moderators of the Usenet group comp.lang.c++ were also main‐
taining a FAQ21 for C++. In 1994, Addison-Wesley published this as
“C++ Faqs” by moderators Marshall Cline and Greg Lomow. In
1998, Cline and Lomow were joined by Mike Girou with the second
edition,22 which covered the then recently released standard.

Both of these FAQs have been maintained online separately for
years, but with the launch of http://isocpp.org, it was clearly time to
merge them. The merged FAQ is in the form of a wiki so that the
community can comment and make improvements.

Today isocpp.org is the home not only to the best source of news
about the C++ community and the Super-FAQ, but also has a list of
upcoming events, some “getting started” help for people new to
C++, a list of free compilers,23 a list of local C++ user groups,24 a list

Standard C++ Foundation | 35

http://isocpp.org/about/
https://isocpp.org/faq
http://www.stroustrup.com/
http://www.amazon.com/FAQs-2nd-Marshall-P-Cline/dp/0201309831/
https://isocpp.org/get-started
https://isocpp.org/wiki/faq/user-groups-worldwide
http://isocpp.org
http://isocpp.org

25 Follow @isocpp https://twitter.com/isocpp
26 https://isocpp.org/std
27 https://isocpp.org/forums
28 http://www.boost.org/doc/libs/
29 http://www.boost.org/community/gsoc.html
30 http://rrsd.com/blincubator.com/
31 http://rrsd.com/blincubator.com/alphabetically/

of tweets,25 recent C++ questions from Stack Overflow, information
about the Standards Committee and the standards process, includ‐
ing statuses, upcoming meetings,26 and links for discussion forums
by working group.27

Boost: A Library and Organization
As described earlier, Boost was created to host free, open source,
peer-reviewed libraries that may or may not be candidates for stand‐
ardization. Boost has grown to include over 125 libraries,28 is the
most used C++ library outside of the standard library, and it has
been the single best source of libraries accepted into the standard
since its inception in 1998.

The Boost libraries and boost.org have become the center of the
Boost community, which is made up of the volunteers who have
developed, documented, reviewed, maintained, and distributed the
libraries.

Since 2005, Boost as an organization has regularly participated in
the Google Summer of Code program, giving students an opportu‐
nity to learn cutting-edge C++ library development skills.29

Since 2006, Boost has gathered for an intimate, week-long annual
conference, originally called BoostCon. More about this later.

Recently, Robert Ramey, a Boost library author, has built the Boost
Library Incubator30 to help C++ programmers produce Boost-
quality libraries. The incubator offers advice and support for
authors and provides interested parties with the opportunity to
examine code and documentation of candidate libraries and leave
comments and reviews. There are currently over 20 libraries31 in the
incubator, all open to reviews and/or comments.

36 | Chapter 4: The Beast Roars Back

https://twitter.com/isocpp
https://isocpp.org/std
https://isocpp.org/forums
http://www.boost.org/doc/libs/
http://www.boost.org/community/gsoc.html
http://rrsd.com/blincubator.com/
http://rrsd.com/blincubator.com/alphabetically/

32 http://en.wikipedia.org/wiki/Category:C%2B%2B_libraries
33 http://en.cppreference.com/w/cpp/links/libs

34 Such as Sun’s early Java API reference site.
35 http://cppreference.com

C++ is an amazing tool for building high-quality libraries and
frameworks, so while the 125+ libraries in Boost are the most dis‐
tributed (other than the standard library), they only scratch the sur‐
face of the libraries and frameworks available for C++. There are
publicly available lists of libraries on Wikipedia32 and cpprefer‐
ence.com.33

Q&A
The Internet revolution has changed the practical experience of
writing code in any language. The combination of powerful public
search engines and websites with reference material and thousands
of questions and answers dramatically reduces the time lag between
needing an answer about a particular language feature, library call,
or programming technique, and finding that answer.

The impact is disproportionately large for languages that are very
complicated, have a large user base (and therefore lots of online
resources) or, like C++, both. Here are some online resources that
C++ programmers have found useful.

Nate Kohl noticed that there were some sites with useful references
for other languages,34 so in 2000, he launched cppreference.com.35

Initially he posted documentation as static content that he main‐
tained himself. From the beginning, there were some contributions
from across the Internet, but in 2008, the contribution interest was
too much to be manageable, so he converted the site to a wiki.

Kohl’s approach is to start with high-level descriptions and present
increasing detail that people can get into if they happen to be inter‐
ested. His theory is that examples are more useful to people trying
to solve a problem quickly than rigorous formal descriptions.

The wiki has the delightful feature that all the examples are compila‐
ble right there on the website. You can modify the example and then
run it to see the result. Right there on the wiki!

Q&A | 37

http://en.wikipedia.org/wiki/Category:C%2B%2B_libraries
http://en.cppreference.com/w/cpp/links/libs
http://cppreference.com

36 http://stackoverflow.com/questions/tagged/c%2b%2b
37 http://cprogramming.com
38 https://groups.google.com/forum/!forum/comp.lang.c++.moderated

39 https://groups.google.com/forum/!forum/comp.lang.c++.moderated
40 https://groups.google.com/forum/#!forum/comp.std.c++

41 http://www.quora.com/What-are-the-best-blogs-on-C++
42 http://www.reddit.com/r/cpp/
43 http://meetingcpp.com/index.php/blogroll.html

As useful as documentation and examples are, some people learn
better in a question-and-answer format. In 2008, Stack Overflow36

launched as a resource for programmers to get their questions
answered. Stack Overflow allows users to submit questions about all
kinds of programming topics and currently contains over 300,000
answered questions on C++.

In order for a Q&A site to be useful, it needs to provide a good way
to find the question you are looking for, and high-quality answers.
Your favorite Internet search engine does pretty well with Stack
Overflow, and the answers tend to be of high quality. Post a ques‐
tion, and it might be answered by Jonathan Wakely, Howard Hin‐
nant, James McNellis, Dietmar Kühl, Sebastian Redl, Anthony
Williams, Eric Niebler, or Marshall Clow. These are the people that
have built the libraries you are asking about.

As useful as a Q&A site like Stack Overflow is, some people feel
more comfortable in a more traditional forum environment. Alex
Allain, who wrote the book Jumping into C++ [JIC] has built cprog‐
ramming.com37 into a community site of its own with references,
tutorials, book reviews, tips, problems, quizes, and several forums.

Of course, for those that like their Q&A retro style, some usernet
groups still exists for C++: comp.lang.c++,38 comp.lang.c++.moder‐
ated,39 and comp.std.c++.40

As you’d expect of a language with a large user base, there are a lot of
Internet hangouts for learning about and discussing C++. There are
dozens of blogs41 and an active subreddit.42 Jens Weller maintains a
blog at Meeting C++ called Blogroll that is a weekly list of the latest
C++ blogs.43

38 | Chapter 4: The Beast Roars Back

http://stackoverflow.com/questions/tagged/c%2b%2b
http://cprogramming.com
https://groups.google.com/forum/!forum/comp.lang.c++.moderated
https://groups.google.com/forum/!forum/comp.lang.c++.moderated
https://groups.google.com/forum/#!forum/comp.std.c++
http://www.quora.com/What-are-the-best-blogs-on-C++
http://www.reddit.com/r/cpp/
http://meetingcpp.com/index.php/blogroll.html

44 http://cppandbeyond.com/

45 And D.
46 The registration limit has varied from 60 to 120, depending on the venue. The 2010

event was so popular an “encore” event was held a couple of months later.
47 The same.

A special mention goes to the freenode.net ##C++ IRC channel,
members of which are known for mercilessly tearing apart every
snippet of code you might care to show them. Funny how harsh cri‐
tique makes good programmers. They also take care of the channel’s
pet, geordi, the friendliest C++ evaluation bot the world has ever
known.

Conferences and Groups
Throughout the 2000s, the market for conference-going C++ pro‐
grammers was largely served by SD West in the US and ACCU in
Europe. Neither conference was explicitly for C++, but both attrac‐
ted a lot of C++ developers and content.

Beginning in 2010 and for every year since, Andrei Alexandrescu,
Scott Meyers, and Herb Sutter have worked together to produce
C++ and Beyond.44 They’ve described it as a “conference-like event”
rather than a conference. We won’t quibble. These are three-speaker,
three-day events with advanced presentations by the authors of
some the most successful books on C++.45 Registration is limited46 to
provide for more speaker-audience interaction. Most attendees have
over a decade of C++ experience, are well informed about program‐
ming in C++, and value the opportunity for informal discussions
with the speakers.

In 2006, Dave Abrahams and Beman Dawes started BoostCon,
which was designed to allow the Boost community to meet face to
face and discuss ideas with each other and users. The intention was
for content to be Boost Library-related, but serve a wider audience
than just the Boost Library developers. Over time, the content
became a little more mainstream, but it always focused on cutting-
edge library development, and attendance was never greater than
100.

While at BoostCon in May, 2011, Jon Kalb47 approached the confer‐
ence planning committee with the idea of making BoostCon more

Conferences and Groups | 39

http://cppandbeyond.com/

48 BoostCon always had two tracks. Initially, the plan was that one track was for Boost
Library developers and the other for users. Over time this distinction was lost, but the
conference continued to have two tracks.

49 http://meetingcpp.com/

mainstream. He argued that BoostCon, while small, was very suc‐
cessful and had the potential to be the mainstream C++ conference
of North America. Kalb proposed that BoostCon change its name to
something with C++ in it, add a third track, and grow the number
of attendees. He pointed out that by the next conference (May 2012),
the new standard update would be released, and there would be a lot
of demand for sessions on C++11. The new track could be entirely
made up of C++11 tutorials. The planning committee accepted the
ideas, and C++Now was born. Something must have been in the air,
because C++Now was only one of three new C++ conferences in
2012.

Late in 2011, Microsoft announced the first GoingNative conference
for February 2012, about three months before the first C++Now.
This conference was different from C++Now in a number of ways,
but was the same in one important way.

Despite the fact that it was produced (and subsidized) by Microsoft,
the content was entirely about portable, standard C++. It was larger,
with probably about four times as many attendees as BoostCon. It
was shorter, lasting two days as opposed to a week. GoingNative ses‐
sions were professionally live-streamed to the world, instead of the
“in-house” video recording done at BoostCon/C++Now. Instead of
multiple tracks with sessions by speakers from across the commu‐
nity, GoingNative had a single track filled entirely with “headliners.”
Almost all of the GoingNative 2012 speakers either had been Boost‐
Con keynote speakers or would be later be C++Now keynoters.

C++Now 2012 had three tracks,48 including one that was a C++11
tutorial track. Conference attendance jumped to 135 from 85 the
previous year.

Jens Weller, inspired by attending C++Now, decided to create a sim‐
ilar conference for Europe in his home country of Germany. The
first Meeting C++ conference49 was held in late 2012, and at 150
attendees, it was larger in its first year than C++Now.

40 | Chapter 4: The Beast Roars Back

http://meetingcpp.com/

50 Weller also blogs regularly about the proposal papers for each standards meeting:
http://meetingcpp.com/index.php/blog.html

51 http://meetingcpp.com/index.php/user-groups.html
52 https://isocpp.org/wiki/faq/user-groups-worldwide
53 After publishing the videos on YouTube, the conference received requests for an alter‐

native from developers in countries where YouTube is blocked. So the conference asked
Microsoft’s Channel 9 to host them as well.

54 https://www.youtube.com/user/Boostcon

Weller has been an active C++ evangelist,50 and Meeting C++ has
continued to grow. It is now at four tracks and is expecting 400
attendees in 2015. Weller’s influence has extended beyond the Meet‐
ing C++ conference. He has launched and is supporting several local
Meeting C++ user groups across Europe.51

The list of C++ user groups52 includes groups in South America as
well as North America and Europe.

C++Now 2013 reached the registration limit that planners had set at
150. The Boost Steering Committee decided that instead of continu‐
ing to grow the conference, it would cap attendance at 150 indefi‐
nitely. After this decision was announced, Chandler Carruth,
treasurer of the Standard C++ Foundation, spoke with Kalb about
launching a new conference under the auspices of the foundation.

Later, Carruth and Kalb would pitch this to Herb Sutter, the founda‐
tion’s chair and president. He was instantly on board, and CppCon
was born. The first CppCon attracted almost 600 attendees to Belle‐
vue, Washington in September of 2014. It had six tracks featuring 80
speakers, 100 sessions, and a house band. One of the ambitious
goals of CppCon is to be the platform for discussion about C++
across the entire community. To further that goal, the conference
had its sessions professionally recorded and edited so that over 100
hours of high-quality C++ lectures are freely available.53

Videos
The CppCon session videos supplement an amazing amount of
high-quality video content on C++. Most of the C++ conferences
mentioned earlier have posted some or all of their sessions online
free. The BoostCon YouTube channel54 has sessions from both

Videos | 41

http://meetingcpp.com/index.php/blog.html
http://meetingcpp.com/index.php/user-groups.html
https://isocpp.org/wiki/faq/user-groups-worldwide
https://www.youtube.com/user/Boostcon

55 https://www.youtube.com/user/MeetingCPP
56 https://www.youtube.com/user/CppCon
57 http://channel9.msdn.com/Events/CPP/C-PP-Con-2014

58 http://channel9.msdn.com/Tags/cppbeyond+2011
59 http://channel9.msdn.com/Tags/cppbeyond+2012

60 http://channel9.msdn.com/Events/GoingNative/GoingNative-2012
61 http://channel9.msdn.com/Events/GoingNative/2013
62 http://channel9.msdn.com/Tags/c++
63 http://channel9.msdn.com/Shows/C9-GoingNative

64 http://www.pluralsight.com/tag/c++
65 https://www.udemy.com/courses/search/?q=c%2B%2B
66 Although Channel 9 content is available as audio-only, this tends to work well only for

panels and interviews.
67 http://cppcast.com/

BoostCon and C++Now. Both Meeting C++55 and CppCon56 have
YouTube channels as well.

Channel 9, Microsoft’s developer information channel, makes its
videos available in a wide variety of formats, including audio-only
for listening on the go. In addition to hosting the CppCon videos,57

some sessions from C++ and Beyond in 201158 and 2012,59 all of the
sessions of the two GoingNative conferences in 201260 and 2013,61

and a number of other videos on C++,62 Channel 9 also has a series
on C++ that is called C9::GoingNative.63

If your tastes or requirements run more toward formal training,
there are some good C++ courses on both pluralsight64 and udemy.65

CppCast
Although there are lots of C++ videos, there is relatively little
audio.66 This follows from the fact that when discussing C++, we
almost always want to look at code, which doesn’t work well with
just audio. But audio does work for interviews, and Rob Irving has
launched CppCast,67 the only podcast dedicated to C++.

42 | Chapter 4: The Beast Roars Back

https://www.youtube.com/user/MeetingCPP
https://www.youtube.com/user/CppCon
http://channel9.msdn.com/Events/CPP/C-PP-Con-2014
http://channel9.msdn.com/Tags/cppbeyond+2011
http://channel9.msdn.com/Tags/cppbeyond+2012
http://channel9.msdn.com/Events/GoingNative/GoingNative-2012
http://channel9.msdn.com/Events/GoingNative/2013
http://channel9.msdn.com/Tags/c++
http://channel9.msdn.com/Shows/C9-GoingNative
http://www.pluralsight.com/tag/c++
https://www.udemy.com/courses/search/?q=c%2B%2B
http://cppcast.com/

68 http://www.amazon.com/Effective-Specific-Improve-Programs-Designs/dp/0321334876/
69 http://scottmeyers.blogspot.de/2011/03/effective-c-in-c0x-c11-age.html
70 https://isocpp.org/tour

Books
There are hundreds of books on C++, but in an era of instant Inter‐
net access to thousands of technical sites and videos of almost every
subjects, publishing tech books is not the business that it once was,
so the number of books with coverage of the 2011 and/or 2014
releases is not large.

We should make the point that because of the backward compatibil‐
ity of standard updates, most of the information in classic C++
books is still largely valid. For example, consider what Scott Meyers
has said about his classic book Effective C++ 68

Whether you’re programming in “traditional” C++, “new” C++, or
some combination of the two, then, the information and advice in
this book should serve you well, both now and in the future.69

Still, using a quality book that is written with the current standard in
mind gives you confidence that there isn’t a better way to do some‐
thing. Here are a few classic C++ books that have new editions
updated to C++11 or C++14:

• Bjarne Stroustrup has new editions of two of his books. Pro‐
gramming: Principles and Practice Using C++, 2nd Edition
[PPPUC] is a college-level textbook for teaching programming
that just happens to use C++. He has also updated his classic
The C++ Programming Language [TCPL] with a fourth edition.
The overview portion of this book is available separately as A
Tour of C++ [ATOC], a draft of which can be read online free at
isocpp.org.70

• Nicolai Josuttis has released a second edition of his classic, The
C++ Standard Library: A Tutorial and Reference [TCSL], which
covers C++11.

• Barbara Moo has updated the C++ Primer [CP] to a fifth edition
that covers C++11. The primer is a gentler introduction to C++
than The C++ Programming Language.

Books | 43

http://www.amazon.com/Effective-Specific-Improve-Programs-Designs/dp/0321334876/
http://scottmeyers.blogspot.de/2011/03/effective-c-in-c0x-c11-age.html
https://isocpp.org/tour

Here are a couple of books that are new, not updates of classic C++
versions:

Scott Meyers’ Effective Modern C++: 42 Specific Ways to Improve
Your Use of C++11 and C++14 [EMC] was one of the most eagerly
awaited books in the community. An awful lot of today’s C++ pro‐
grammers feel like the Effective C++ series was a formative part of
our C++ education, and we’ve wanted to know for a long time what
Scott’s take on the new standard would be. Now we can find out.

Unlike the previously mentioned books, Anthony Williams’ C++
Concurrency in Action: Practical Multithreading [CCIA] is not about
C++ generally, but just focuses on the new concurrency features
introduced in C++11. The author is truly a concurrency expert. Wil‐
liams has been the maintainer of the Boost Thread library since
2006, and is the developer of the just::thread implementation of the
C++11 thread library. He also authored many of the papers that
were the basis of the thread library in the standard.

44 | Chapter 4: The Beast Roars Back

CHAPTER 5

Digging Deep on Modern C++

The power of the additional features that were introduced with the
2011 and 2014 updates comes not just from the changes, but from
the way these changes integrate with classic features. This is the pri‐
mary reason the update feels like a whole new language, rather than
a version of classic C++ with a collection of new features bolted on.

In this chapter, we will demonstrate what that means, which
requires looking at some code. Feel free to skip this chapter if your
interest in C++ is not as a coder.

Type Inference: Auto and Decltype
When a language supports type inference, it is often presented as
just a convenient way to not have to explicitly write out types. “The
compiler already knows the type—why should the programmer have
to write it out?” Indeed, this point of view is important. Oftentimes,
the type is just visual clutter, as demonstrated by the definition and
usage of c_v_s_iter in Example 5-1, which is written in a pre-C++11
style.

Example 5-1. Type inference: visual type clutter

#include <algorithm>
#include <iostream>
#include <string>
#include <vector>

// trivial implementation of the unix uniq utility

45

// read lines from stdin
// write sorted unique lines to stdout
int main(int argc, char** argv) {
 using std::vector; using std::string; using std::sort;
 using std::unique; using std::cin; using std::cout;

 vector<string> lines;
 while (cin) {
 lines.emplace_back();
 getline(cin, lines.back());
 };

 sort(lines.begin(), lines.end());

 typedef typename vector<string>::const_iterator c_v_s_iter;
 c_v_s_iter const last = unique(lines.begin(), lines.end());
 lines.resize(last - lines.begin()); // keep only the result of
 // unique

 for (c_v_s_iter i = lines.begin(), e = lines.end(); i < e; ++i) {
 cout << (*i) << '\n';
 }
}

If this doesn’t seem like a big deal, it’s because it isn’t—in this case.
Still, it breaks the flow of reading code because of completely unnec‐
essary complications. One’s mind wonders if the equivalent Python
would be easier to read.

We can do better with a modern style.

Example 5-2. Type inference: less clutter

 sort(begin(lines), end(lines));
 auto const last = unique(begin(lines), end(lines));
 lines.resize(last - begin(lines)); // keep only the result of
 // unique

 for (auto const& line : lines) {
 cout << line << '\n';
 }

Once code becomes more complex, overflowing the programmer’s
working memory, one is grateful for the absence of unnecessary
symbols.

46 | Chapter 5: Digging Deep on Modern C++

1 While Boost has continualy proven that nothing is impossible (boost::bind comes to
mind), for the vast majority of programmers, unthinkable is much the same thing as
impossible.

2 Before C++11, one had to use std::copy to transfer the results into an output iterator,
which in this case would be a std::ostream_iterator<string>(cout, "\n"), but this
is inelegant and rather inflexible compared to just using a for loop, since writing out‐
put iterators for every purpose is rather involved, not to mention verbose.

However, type inference does not merely make things easier. In
some cases, it takes code from unthinkable1 to obvious. For example,
let’s implement it with boost::range.

Example 5-3. Type inference: complex iterator types

 sort(begin(lines), end(lines));
 for (auto const& line : lines | uniqued) {
 cout << line << '\n';
 }

The type uniqued returns is intractable at the least (especially over
multiple pipes of filtered, sliced, etc.), and moreover, the pro‐
grammer really does not care about what the iterator type is. The
only relevant fact is that dereferencing it yields a string.2 The code
therefore expresses intent without extraneous detail and without
losing a sliver of performance.

The addition of type inference does more than give the programmer
another tool for writing programs faster. It also fundamentally
destroyed the last remnants of the notion that type annotations are
there for the compiler. Instead, the types one actually writes out are
a layer of assertions that the programmer instructs the compiler to
check, and clues to the reader. Writing auto means that the type is
unimportant; only its behavior, as defined by its usage, is important.
Writing the type out explicitly means the type has to be exactly what
it says. Put another way: types are henceforth always intentional,
never circumstantial.

Put this way, it is trivial to recognize the missing element in this sce‐
nario: auto means any type, and writing the type out explicitly
means exactly this type, or a type convertible to it. There is no way,
however, to constrain the type only partially. The family of solutions
to this problem are called concepts in C++, but so far, the committee
has not reached consensus on important details of this feature. Get‐

Type Inference: Auto and Decltype | 47

3 In functional programming, functions do not modify global state or the state of their
parameters. Computational results are exclusively captured by return values. https://
wiki.haskell.org/Functional_programming

4 For performance-obsessed C++ programmers, issues like this could make functional
programming a nonstarter.

ting it right the first time is important, as is not breaking existing
code, and so concepts have been left out of the standard so far. The
search for the ideal solution continues.

How Move Semantics Support Value-Semantic
and Functional Programming
In the previous chapter, we indirectly explored the beautiful world
of procedural programming: std::sort and std::unique are algo‐
rithms that mutate state passed to them. While this makes them
wonderful building blocks for procedural programs, they do not
compose well with a more functional style of programming.3

In C++, writing in a functional style often came with a price of a
mandatory copy of a parameter.4 Consider the implementation of
sorted and uniqued as functions.

Example 5-4. Implementation of sorted

template <typename Container>
Container sorted(Container x) {
 std::sort(begin(x), end(x));
 return x;
}

Example 5-5. Implementation of uniqued

template <typename Container>
Container uniqued(Container x) {
 x.resize(std::unique(begin(x), end(x)) - begin(x));
 return x;
}

In classic C++, the natural way of getting a vector of unique lines
uniqued(sorted(lines)) results in two (or three) expensive copies:
first, lines is copied to become sorted’s parameter, and then the
return value of sorted is copied to become uniqued’s parameter.

48 | Chapter 5: Digging Deep on Modern C++

https://wiki.haskell.org/Functional_programming
https://wiki.haskell.org/Functional_programming

5 If the copy is not elided entirely. “Elided” is standard-speak for a copy omitted as
unnecessary.

6 Should we have needed lines to be untouched, we would have assigned to a different
variable and not used the move().

Finally, the return value of uniqued is copied into a variable in the
local scope, should one choose to store it.

In C++11, the two return values are moved instead5—in the case of
vector, only pointers to the internal structure are copied. The
rationale for moving return values instead of copying is that we
know that the very next thing that happens to the returned tempo‐
rary object is destruction. This well-chosen mechanism enabled us
to get rid of two copies. But what about the first copy of lines? We
get rid of it using std::move, which instructs the compiler to treat
its parameter as if it were an unnamed temporary.

Example 5-6. Getting rid of all copies

 lines = uniqued(sorted(std::move(lines)));

In the snippet, there are no copies at all. As a final step, the result is
moved back into lines.6 This is just as efficient as the procedural
version, while the functions, as implemented, supply all of the
advantages of reasoning about code that come with a pure-
functional style.

The ranged for loop is as easy to write as it would be in Python, but
without performance loss.

Example 5-7. Ranged for loops can iterate over function return values

 for (auto const& line : uniqued(sorted(std::move(lines)))) {
 cout << line << '\n';
 }

No More Output Parameters
One of the problems classic C++ inherited from C is that functions
only return a single value. While one could have, in fact, returned a
std::pair, boost::tuple, or other type defined simply to hold
multiple values, it was not commonly done in practice, in part
because returning large objects tended to be expensive if not done

No More Output Parameters | 49

7 Return value optimization, while explicitly provisioned for by the standard, is not
understood by the majority of programmers and is not applicable in all situations.

correctly,7 and in part because returning objects just to unpack them
in several following lines is rather verbose.

The alternative was to use output parameters. One would create the
objects that would become a function’s return value before calling
the function, and then pass references to them to the function,
which would assign values to them.

This is very efficient in execution, but not in programmer produc‐
tivity. The output parameters are indistinguishable from the input
parameters of the function when one is reading code, necessitating a
thorough knowledge of exactly what the function does to its param‐
eters in order to reason about code. Output parameters, conse‐
quently, were recognized as detracting from clarity.

The new tuple library, aided by move semantics to stay fast and lean,
allows for much improvement. Consider the case where one wants
to calculate some statistics of a sequence of numbers. We chose
length, minimum and maximum, with the average and variance left
as an exercise for the reader.

Example 5-8. Compute the length, min, and max of the values

template <typename ConstInputIterator,
 typename MinMaxType =
 iterator_value_type<ConstInputIterator>>
auto lenminmax(ConstInputIterator first, ConstInputIterator last)
 -> std::tuple<size_t, MinMaxType, MinMaxType> {
 if (first == last) { return {0, 0, 0}; }
 size_t count{1};
 auto minimum(*first);
 auto maximum(minimum); // only evaluate *first once
 while (++first != last) {
 ++count;
 auto const value = *first;
 if (value < minimum) {
 minimum = value;
 } else if (maximum < value) {
 maximum = value;
 }
 }
 return {count, minimum, maximum};
}

50 | Chapter 5: Digging Deep on Modern C++

8 In the olden days, we would rely on iterator traits, which generated much confusion in
teaching, and required library authors to provide them for their structures, which did
not always happen.

The function returns three values, is as efficient as can be, and does
not mutate any external state.

The following example shows how to use it:

Example 5-9. Use the lenminmax function

 vector<int const> samples{5, 3, 6, 2, 4, 8, 9, 12, 3};
 int min, max;
 tie(ignore, min, max) = lenminmax(samples.begin(), samples.end());

 cout << "minimum: " << min << "\n"
 << "maximum: " << max << "\n";

Notice how we used tie to assign to min and max and ignore the
length.

There is one more thing to consider: how did we discover the type
of the tuple that lenminmax returns? We seem to use the magical
iterator_value_type to infer the type the iterator returns.8 Logi‐
cally, the type of minimum and maximum is whatever type the itera‐
tor’s reference is: the type of *first.

We can get that type with decltype(*first). Still, that’s not quite
right, because *first returns a reference, and we need a value type.
Fortunately, there is a way to get rid of references in types:
std::remove_reference<T>::type. We just need to supply the type,
which makes std::remove_reference<decltype(*first)>::type.
This is quite a mouthful, so we would be better served if we could
make a type alias for it. However, in the type alias, we cannot use
"first" because the name is not defined outside of the function.
Still, we need some kind of value inside the decltype to dereference.
Again, the standard library has what we need: declval<T>().
declval<T>() gives us a fictional reference to use inside decltype
in place of first. The result is in the next example.

No More Output Parameters | 51

9 Note that a sequence of zero or one items is, by definition, sorted.

Example 5-10. How to get the type of the value that any iterator points
to

template <typename T>
using iterator_value_type = typename std::remove_reference<
 decltype(*std::declval<T>())>::type;

Now, we can just use it everywhere, like in the definition of the len
minmax function.

Inner Functions with Lambdas
Sometimes, an algorithm requires an action to always be performed
in a particular way. Measurement is often such a thing. For instance,
every time one writes into an output iterator, one must increment it
(see push in the next example).

Merge sort is an algorithm that sorts a sequence of items by first
splitting it into already sorted subsequences9 and then merging them
two by two into successively longer sequences, until only one is left.
The merge algorithm works by comparing the heads of both input
sequences and moving the smaller one to the end of the output
sequence. It repeats this process until both input sequences have
been consumed.

This is conceptually very simple. When writing the merge routine, it
very quickly crystallizes that we shall have to write two nearly iden‐
tical pieces of code — one for when the head of the first sequence is
to be moved, and one for the second sequence. However, with an
inner function (advance), we can write this piece of code once, and
just call it twice, with the roles of both sequences reversed.

Example 5-11. Using lambdas for inner functions to simplify
algorithms

template <typename InputIterator1, typename InputIterator2,
 typename OutputIterator>
auto move_merge(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 OutputIterator&& out) -> OutputIterator {
 using std::move; using std::forward;

52 | Chapter 5: Digging Deep on Modern C++

 auto drain = [&out](auto& first, auto& last){
 return move(first, last, forward<OutputIterator>(out));
 };
 auto push = [&out](auto& value) { *out = move(value); ++out; };
 auto advance = [&](auto& first_a, auto& last_a, auto& value_a,
 auto& first_b, auto& last_b, auto& value_b) {
 push(value_a);
 if (++first_a != last_a) {
 value_a = move(*first_a);
 return true;
 } else { // the sequence has ended. Drain the other one.
 push(value_b);
 out = drain(++first_b, last_b);
 return false;
 }
 };

 if (first1 == last1) { return drain(first2, last2); }
 else if (first2 == last2) { return drain(first1, last1); }
 auto value1(move(*first1));
 auto value2(move(*first2));
 for (bool not_done = true; not_done;) {
 if (value2 < value1) {
 not_done = advance(first2, last2, value2,
 first1, last1, value1);
 } else {
 not_done = advance(first1, last1, value1,
 first2, last2, value2);
 }
 }
 return out;
}

Also notice that we were able to give the part of the algorithm that
drains the final remaining sequence into the output sequence a
name, even though the actual implementation is only one line. Every
part of the algorithm reads cleanly.

This is also a great example of the difference in style between inner
functions and regular functions. This much mutation, in-out
parameters, etc., are extremely poor style when designing function
signatures, because the implementation might be far from the point
of use. In most contexts, in-out parameters cause higher cognitive
load for the programmer, making bugs and slowdowns more proba‐
ble.

However, inner functions are not public, and their implementation
is close at hand—it is in the same scope! Here, in-out parameters do
not cause higher cognitive load. Instead, they help us understand

Inner Functions with Lambdas | 53

that the algorithm has the same structure for both branches after the
comparison and make sure that it is in fact the same both times.

We defined drain in order to omit the rather cumbersome forward‐
ing syntax from the call of move in order to make the names of the
sequence iterators stand out better where it is called.

The purpose of push is that output iterators have to be incremented
every time they are dereferenced, and some such iterators are rather
heavy to copy. In order to be able to use pre-increment, two lines are
needed.

Finally, advance is the meat of the algorithm. The reason for its defi‐
nition is the aforementioned fact that, after we compare the heads of
sequences and thus determine which head to move, moving one
head looks exactly the same as moving the other.

Lambdas as a Scope with a Return Value
Lambda expressions can also be directly evaluated, finally allowing
for some logic in initializing references and variables that are not
default-constructible because they hold resources. Let’s take a look at
a very simple implementation of a multithreaded producer-
consumer queue.

For performance in using synchronized data structures, one should
release a lock as soon as possible. At (1) in the next example, the ele‐
ment is returned as soon as it has been popped off the queue; the
function then ends, the lock is released, and the element is processed
afterward.

Example 5-12. Returning from a scope

 deque<int> queue;
 bool done = false;
 mutex queue_mutex;
 condition_variable queue_changed;

 thread producer([&]{
 for (int i = 0; i < 1000; ++i) {
 {
 unique_lock<mutex> lock{queue_mutex};
 queue.push_back(i);
 }
 // one must release the lock before notifying
 queue_changed.notify_all();

54 | Chapter 5: Digging Deep on Modern C++

 } // end for
 {
 unique_lock<mutex> lock{queue_mutex};
 done = true;
 }
 queue_changed.notify_all();
 });
 thread consumer([&]{
 while (true) {
 auto maybe_data = [&]()->boost::optional<int>{ // (1)
 unique_lock<mutex> lock{queue_mutex};
 queue_changed.wait(lock,
 [&]{return done || !queue.empty();});
 if (!queue.empty()) {
 auto data = move(queue[0]);
 queue.pop_front();
 return boost::make_optional(move(data));
 }
 return {};
 }(); // release lock
 // do stuff with data!
 if (maybe_data) { std::cout << *maybe_data << '\n'; }
 else { break; }
 }
 });
 producer.join();
 consumer.join();

Most often, you will want to encapsulate this logic into a class, but it
is exceedingly hard to design general queuing interfaces that are
nevertheless fast in all scenarios. Sometimes, an ad hoc approach is
exactly what is needed, such as in a book, where the limit is a page.
Without the gratuitous use of lambda functions, this code would be
longer and less clear.

Lambdas as a Scope with a Return Value | 55

CHAPTER 6

The Future of C++

We don’t claim any particular gifts at seeing the future, but we can
peak at where the standard is going, and then we’ll point out some
of the trends that we see today that we think will continue to be
important, perhaps even more important in the future.

Setting the Standard
What will be in C++17? Of course we won’t have a complete answer
until it is finished, but we can get a hint about where the language is
going by looking at what the committee is working on now. One
clue is to look at the working groups that were formed after the 2011
release and what they are working on.

The new groups include:

Concurrency
Multithreading libraries have always been a part of C++, but
only with the 2011 release has concurrency been part of the
standard. But concurrency is a huge topic, and only basic build‐
ing blocks were provided in C++11/14. There is room for stan‐
dard thread pool and other concurrency tools. This is also the
group that looks at vectorization and how to exploit GPUs, a
much needed enhancement to C++.

Modules
The header-based include model needs to be replaced by a sys‐
tem that explicitly defines what a module wants to make public.

57

1 Its work is complete.
2 http://research.cs.wisc.edu/trans-memory/

This can support dramatically faster builds and better encapsu‐
lation of libraries.

File System
It currently isn’t possible to read the contents of a directory in a
standard portable way. This group is looking at the Boost File‐
System library.

Networking (Inactive1)
Currently all networking done in C++ (and there is a lot) is
done with nonportable libraries. It is time that networking is
part of the standard.

Transactional Memory
The future is concurrency, but “locks” don’t compose or scale.
Transactional memory is one possible solution.2

Numerics
Fortran is often seen as the language of choice for programs
requiring extensive numeric computations, particularly if
matrixes are required. The Standards Committee isn’t willing to
cede this domain.

Reflection
C++ reflection is limited. It is likely to continue to be restricted
to compile time, but there are a lot of opportunities for
improvement even with this limitation.

Concepts
Investigating how to define constraints on types used in generic
programming.

Ranges
Investigating how to update the standard library with a range
concept rather than iterator pairs and how to extend this to
include containers and range-based algorithms.

Feature Test
Standard features are rolled out as fast as tool vendors can pro‐
vide them. This group is looking at how to define a portable
standard way to check for the presence of new features.

58 | Chapter 6: The Future of C++

http://research.cs.wisc.edu/trans-memory/

3 Currently handled directly by Library Evolution working group.

4 We are looking at you, vector<bool>.
5 The difference between an ISO Technical Report, of which the Committee released one

in 2005, and an ISO Technical Specification, which will be used by the Committee
going forward, is not very interesting. The TR1 should probably have been released as a
TS.

Databases (Inactive3)
Database-related library interfaces.

Undefined and Unspecified Behavior
This group is reviewing all the areas that the standard calls out
as undefined or unspecified behavior in order to recommend a
set of changes to how these are called out.

I/O
This group is looking into standardizing low-level graphic/
pointing I/O primitives.

One of the committee’s highest priorities is backward compatibility.
Any existing standard-compliant code must continue to compile
and mean the same thing after any change to the standard.

The practical implication of this is that the committee (and the
broader community) must live forever with any errors in the stan‐
dard.4 Any feature released in the standard will have code written
that relies on that feature as specified. If that feature was specified
incorrectly, correcting it in a subsequent standard would break
existing code. In general, proposals that break existing code are non-
starters with the committee.

Making this even more difficult is the fact that for some features,
real-world experience is the only good way to know the best way to
specify the feature. To address the problem, the committee is begin‐
ning to use technical specifications (TS).5 A TS is way of releasing a
set of features (either core language, library, or both) that are con‐
sidered standard-candidate material.

Tool vendors can implement a TS and provide it to users as a non-
standard extension for experimental use. This allows the committee
to gather real-world user experience before adding the feature to the
standard.

Setting the Standard | 59

6 It worked well with the TR1 from 2005 that was incorporated into the 2011 release with
some minor changes. But that was library-only, and almost all of it was already imple‐
mented and in wide usage as Boost libraries.

7 The approach will also fail if users embrace the TS in such a way that it becomes a de
facto standard of its own.

8 File System

How well does this process work? Well, we don’t know yet.6 In order
for the TS approach to work, vendors must implement, and users
must experiment with each TS released.7 This seems very likely, but
only one TS has been released,8 and it is too early to know how this
will work out.

Here are the technical specifications that are currently in pipeline:

File System
Work based on Boost.Filesystem v3, including file and directory
iteration.

Library Fundamentals
A set of standard library extensions for vocabulary types like
optional<> and other fundamental utilities.

Networking
A small set of network-related libraries including support for
network byte order transformation and URIs.

Concepts
Extensions for template type checking.

Arrays
Language and library extensions related to arrays, including
runtime-sized arrays and dynarray<>.

Parallelism
Initially includes a Parallel STL library with support for parallel
algorithms to exploit multiple cores, and vectorizable algo‐
rithms to exploit CPU and other vector units.

Concurrency
Initially includes library support for executors and non-
blocking extensions to std::future. Additionally may include
language extensions like await, and additional libraries such as
concurrent hash containers and latches.

60 | Chapter 6: The Future of C++

9 There is not even any guarantee that next standard will be released in 2017.
10 Casey Stengel
11 “If something cannot go on forever, it will stop." — Herbert Stein

Transactional Memory
A promising way to deal with mutable shared memory that is
expected to be more usable and scalable than current techniques
based on atomics and mutexes.

There is absolutely no guarantee that any of these will be in the 2017
standard.9 But knowing that this is what the committee is working
on gives us a sense of its priorities and ambition for the evolving
standard for C++.

Never Make Predictions, Especially About the
Future10

Stein’s Law is that trends that can’t continue won’t.11 The trick is to
figure out which trends will continue indefinitely. Here are some
that we see.

Performance
Mobile and cloud computing has rekindled the interest in perfor‐
mance, and we think performance will always be important. No
computer will ever be powerful or energy efficient enough that per‐
formance won’t matter, at least for some very important applica‐
tions. This looks good for a language that has always been
uncompromising in its approach to performance.

New Platforms
As the cost of hardware falls, more and more computing devices will
be created. These new devices will mean new environments, some
with very tight memory footprint requirements. This looks good for
a highly portable systems language with a “you don’t pay for what
you don’t use” approach to features.

Never Make Predictions, Especially About the FutureCasey Stengel | 61

Scale
At the top end, the falling cost of hardware will lead to the design
and implementation of systems of a size that are difficult for us to
imagine now. To implement these systems, engineers are going to
look for a language that scales with additional users and teams and
supports the creation of very large systems. Such a language will
need to have high performance, but also support the high-level
abstractions necessary to design systems at that scale. It will also
need as much compiler-aided bug-catching as possible, which is
heavily aided by an expressive type system that C++ supports.

Software Ubiquity
Our world is going to be more and more one in which we are sur‐
rounded by software. Will all of this software need to be highly
portable, low-memory, high-performance code? Of course not.
There will be great demand for applications that do not require soft‐
ware to be pushed to the limit. But these applications will always run
on infrastructure where performance will be in demand. A lot of
this infrastructure is currently written in C, but when infrastructure
code requires high-level abstractions, that code is and will usually be
written in C++.

It may be that the software industry as a whole will grow faster than
the C++ community and that shrinking market share may make
C++ appear to be less important. But the fact is that high perfor‐
mance infrastructure makes it possible to create applications in a
less demanding programming environment. More programmers
working in high-level, nonsystems languages just increases the
demand for and value of the systems-programming projects that
make their work possible.

Powerful Tools
The philosophy of C++ has been to rely more and more on a power‐
ful compiler to do the heavy lifting of making high-performance
applications. At times, that has pushed our compilers to the break‐

62 | Chapter 6: The Future of C++

12 Early users of code that pushed the envelope on templates sometimes found that their
compilers seemed to grind to a halt. Advances in compiler technology and computing
power generally overcame this limitation.

ing point.12 We think this is the correct direction for tool develop‐
ment: designing tools that let programmers focus on expressing
their ideas as clearly as possible, and let the tools do the hard work
to implement these ideas efficiently.

We will see the language definition evolve toward making more
demands on the compiler. We’ll also see more and more creative
tools built with the Clang toolkit.

The world of computing technology can change quickly, dramati‐
cally, and sometimes unexpectedly, but from where we sit, it looks
like C++ is going to continue to play an important role for the fore‐
seeable future.

Never Make Predictions, Especially About the FutureCasey Stengel | 63

Bibliography

[JIC] Allain, Alex. Jumping into C++. Cprogramming.com, 2013
(ISBN: 9780988927803)

[TCSL] Josuttis, Nicolai. The C++ Standard Library: A Tutorial and
Reference. 2nd ed. Addison-Wesley Professional (ISBN:
9780201543308)

[CP] Lippman, Stanley, Josée Lajoie, Barbara Moo. C++ Primer. 5th
ed. Addison-Wesley Professional, 2012 (ISBN: 9780321714114)

[EMC] Meyers, Scott. Effective Modern C++. O’Reilly Media Inc.,
2014 (ISBN: 9781491903995)

[FM2G] Stepanov A. A. and D. E. Rose. From Mathematics to
Generic Programming. Pearson Education, 2014 (ISBN:
9780133491784)

[DEC] Stroustrup, Bjarne. The Design and Evolution of C++.
Addison-Wesley Professional, 1994 (ISBN: 9780201543308)

[TCPL] Stroustrup, Bjarne. The C++ Programming Language. 4th ed.
Addison-Wesley Professional, 2013 (ISBN: 9780321563842)

[PPPUC] Stroustrup, Bjarne. Programming: Principles and Practice
Using C++. 2nd ed. Addison-Wesley Professional, 2014 (ISBN:
9780321992789)

[ATOC] Stroustrup, Bjarne. A Tour of C++ Addison-Wesley Profes‐
sional, 2013 (ISBN: 9780321958310)

[CCIA] Williams, Anthony. C++ Concurrency in Action: Practical
Multithreading. Manning Publications, 2012 (ISBN: 9781933988771)

65

13 Hanabusa Itchō

About the Authors
Jon Kalb does on-site training on C++ best practices and advanced
topics. He is an Approved Outside Training Vendor for Scott Mey‐
ers’ training materials and is an award-winning conference speaker.
For information on course content, dates, and rates, please email
jon@cpp.training.

Jon has been programming in C++ for two and a half decades. He is
currently working on Amazon’s search engine at A9.com. During
the last 25 years, he has written C++ for Amazon, Apple, Dow
Chemical, Intuit, Lotus, Microsoft, Netscape, Sun, Yahoo!, and a
number of companies that you’ve not heard of.

Gašper Ažman is an undercover mathematician masquerading as a
software engineer. On his quest to express ideas precisely, concisely,
and with great care for simplicity, he likes to study emerging pro‐
gramming languages for new tricks to apply in his C++. He is cur‐
rently taking a hiatus from teaching to work on the Amazon search
engine at A9.com. In his free time, he makes music and bread.

About the Cover
The image on the cover is a Japanese artist’s13 illustration of an
ancient Chinese legend about an Old Master who asked his disciples
to describe a language that he gave them. The first student said, this
language is an improvement on portable assembler. The next stu‐
dent said, this is a language for constructing beautiful libraries.
Another student said, no, this language is for constructing hierar‐
chies of objects. No, said the next student, this language is for
expressing mathematical functions in the real world. You’ve missed
its power, said another, it is for expressing generic truths about any
type...

And as the students argued on, the Old Master smiled to himself.

mailto:jon@cpp.training

	Copyright
	Table of Contents
	Preface
	Chapter 1. The Nature of the Beast
	C++: What’s It Good For?
	High-Level Abstractions at Low Cost
	Low-Level Access When You Need It
	Wide Range of Applicability
	Highly Portable
	Better Resource Management
	Industry Dominance

	Chapter 2. The Origin Story
	C: Portable Assembler
	C with High-Level Abstractions
	The ’90s: The OOP Boom, and a Beast Is Born
	The 2000s: Java, the Web, and the Beast Nods Off

	Chapter 3. The Beast Wakes
	Technology Evolution: Performance Still Matters
	Language Evolution: Modernizing C++
	Tools Evolution: The Clang Toolkit
	Library Evolution: The Open Source Advantage

	Chapter 4. The Beast Roars Back
	WG21
	Tools
	Standard C++ Foundation
	Boost: A Library and Organization
	Q&A
	Conferences and Groups
	Videos
	CppCast
	Books

	Chapter 5. Digging Deep on Modern C++
	Type Inference: Auto and Decltype
	How Move Semantics Support Value-Semantic and Functional Programming
	No More Output Parameters
	Inner Functions with Lambdas
	Lambdas as a Scope with a Return Value

	Chapter 6. The Future of C++
	Setting the Standard
	Never Make Predictions, Especially About the FutureCasey Stengel
	Performance
	New Platforms
	Scale
	Software Ubiquity
	Powerful Tools

	Bibliography
	About the Authors

