¥ Kotlin 1.4 Online Event

Coroutines Update

@qwwdfsad October 13, 2020

Coroutines debugging

Coroutines debugging

private suspend fun processUserEvents() {
while (someCondition) {
4 val element:Int = channel.receive()
processElement(element)

}

workDone ()

Coroutines debugging

private suspend fun processUserEvents() {
while (someCondition) {

> val element :Int = channel.receive()
- processElement(element)

+

workDone ()

Coroutines debugging

Debug: _SomeApplication =*_ :kotlinx-coroutin...

(X Debugger BHConsole = 2 ¥ ¥ 2 3 % H

I Frames Threads Variables
"Test worker @cor...p "main": RUNNING ¥ J Y this = {SomeApplication@2363}
$result = {Integer@2203} 1

processUserEvents:24, SomeApplication (kot/inx.coroutine 01 element = 1

invokeSuspend:-1, SomeApplication$processUserEvents$1

o run:56, DispatchedTask (kot/inx.coroutines)

% processNextEvent:274, EventLooplmplBase (ko?/inx.corout,
joinBlocking:84, BlockingCoroutine (ko#/inx.coroutines)

(0] runBlocking:59, BuildersKt__BuildersKt (ko#/inx.coroutines)
runBlocking$default:38, BuildersKt__BuildersKt (ko#/inx.cor

o N S T S S TP SR PUP S ST D DRSS P Sy S S

Coroutines debugging — IDEA 2020.1

Debug: ~SomeApplication =*_ :kotlinx-coroutin...

(X Debugger BHConsole = & ¥ ¥ 2 X ¥ H

TS Frames Threads Variables
"Test worker @cor...p "main": RUNNING Jy Y this = {SomeApplication@2363}
$result = {Integer@2203} 1

processUserEvents:24, SomeApplication (kot/inx.coroutine o1 element = 1

startProcessing:35, SomeApplication (ko#/inx.coroutines)

initiateUserSession:30, SomeApplication (kot/inx.coroutine:.

%

invokeSuspend:51, SomeApplication$testDebuggingExperie

I\l

run:56, DispatchedTask (kot/inx.coroutines)
processNextEvent:274, EventLooplmplBase (ko#/inx.corout,
joinBlocking:84, BlockingCoroutine (kof/inx.coroutines)

SRR] PRSRER PRLSSEB [ERL] PP PSR 1 | PR [P B P o Ol B v ramvvasidii wvali D, i e

¥ B

Coroutines debugging

Debug: ~SomeApplication... _SomeApplication... =*_:kotlinx-coroutin...

c: Debugger El Console = M ¥ 3 T8 My H

» Frames Threads Variables
" "Test worker @co...p "main": RUNNING v 4+ J Y this = {SomeApplication@2368}
userld = "qwwdfsad"
m processUserEvents:24, SomeApplication (kot/inx.coroutine diagnosticParameter = "https://bitl
startProcessing:35, SomeApplication (kot/inx.coroutines)
o initiateUserSession:30, SomeApplication (kof/inx.coroutine
% invokeSuspend:51, SomeApplication$testDebuggingExper

run:56, DispatchedTask (kot/inx.coroutines)

processNextEvent:274, EventLooplmplBase (kot/inx.corou

joinBlocking:84, BlockingCoroutine (kot/inx.coroutines)

» 3O,

RN 5L NP DO PP L o Y [R [P R P N | o (RREL] DS DRGSR P4 B SRS I . SRCHESE e e £ SOREE

Debugging meets coroutines 1.3.8+

JREE IR T TN N SRR :
Variables Watches Memory Overhead Coroutines
this = {SomeApplication@2211} BlockingEventLoop@4893d85d
P userld = "qwwdfsad" "coroutine:1": SUSPENDED
P diagnosticParameter = "https://bitly.com/1} doBackgroundWork:62, SomeApplication ... View
$result = null invokeSuspend:56, SomeApplication$test... View

Coroutine creation stack trace
Dispatchers.Default
Dispatchers.lO
"coroutine:3": RUNNING on thread "DefaL... View
processUserEvents:24, SomeApplication ... View

startProcessing:35, SomeApplication (kot...
initiateUserSession:30, SomeApplication ... View
initiateSession:41. SomeApplication (kotli... View

Flow

val flow: Flow<Int> = flow {

-S-} delay(100)
for (i in 1..19) {
-S-} emit (i)
}
}.map {
> delay(108)
it * it

StateFlow

® 5 ©

ORNG

State

A condition or way of being
that exists at a particular time

var variable: Int = 42

https://dictionary.cambridge.org/dictionary/english/condition
https://dictionary.cambridge.org/dictionary/english/exist
https://dictionary.cambridge.org/dictionary/english/particular
https://dictionary.cambridge.org/dictionary/english/time

StateFlow

Download complete B @

v
—i‘ﬁ Download Complete

MDCD. zip From wiww.nikonusa,com
[....-----.---.------------..-.-.-.-------.?
Downloaded: 237KBin 1 sec

Download to: C:\Documents and Set...\NDCD.zip

Transfer rate: 237KB/Sec

[] Close this dialog box when download completes

—

[Open [Dpen Folder]l[Close]

StateFlow

kotlinx-coroutines-core / kotlinx.coroutines.channels / ConflatedBroadcastChannel

ConflatedBroadcastChannel

@ExperimentalCoroutinesApi class ConflatedBroadcastChannel<E> :
BroadcastChannel<E> (source)

Broadcasts the most recently sent element (aka value) to all openSubscription subscribers.

Back-to-send sent elements are conflated - only the the most recently sent value is received, while previously sent
elements are lost. Every subscriber immediately receives the most recently sent element. Sender to this
broadcast channel never suspends and offer always returns true.

A secondary constructor can be used to create an instance of this class that already holds a value. This channel is
also created by BroadcastChannel(Channel.CONFLATED) factory function invocation.

This implementation is fully lock-free. In this implementation opening and closing subscription takes O(N) time,
where N is the number of subscribers.

Note: This API is experimental. It may be changed in the future updates.

StateFlow

kotlinx-coroutines-core / kotlinx.coroutines.channels / ConflatedBroadcastChannel

ConflatedBroadcastChannel

@ExperimentalCoroutinesApi class ConflatedBroadcastChannel<E> :
BroadcastChannel<E> (source)

Broadcasts the most recently sent element (aka value) to all openSubscription subscribers.

Back-to-send sent elements are conflated - only the the most recently sent value is received, while previously sent
aloaments are lost. Every subscriber immediately receives the most recently sent element. Sender to this
suspends and offer always returns true.

be used to create an instance of this class that already holds a value. This channel is
annel(Channel.CONFLATED) factory function invocation.

bscribers.

ental. It may be changed in the future updates.

StateFlow

public interface StateFlow<out T> : Flow<T> {
public val value: T
Y

StateFlow

public interface MutableStateFlow<T> : Flow<T> {
public override var value: T
Y

StateFlow

class DownloadingModel {

private val _status = MutableStateFlow<DownloadStatus>(DownloadStatus.NOT_REQUESTED)
val status: StateFlow<DownloadStatus> get() = _status

suspend fun download() {

StateFlow

class DownloadingModel {

suspend fun download() {
_status.value = DownloadStatus.INITIALIZED
initializeConnection()

StateFlow

class DownloadingModel {

suspend fun download() {

processAvailableContent { partialData: ByteArray,
downloadedBytes: Long,
totalBytes: Long ->
storePartialData(partialData)
_status.value = DownloadProgress(downloadedBytes.toDouble() / totalBytes)

StateFlow

class DownloadingModel {

suspend fun download() {

_status.value = DownloadStatus.SUCCESS

SharedFlow

[Single—event processing)

[Multiple—event processing]

SharedFlow

SharedFlow

e Costly connections
e May be unused

e Replay log

e Flexibility

Existing solutions

e Subjects: BehaviorSubject, AsyncSubject, ReplaySubject
e ConnectableFlowable: connect, refCount, autoConnect
e Processors: Emitter, Unicast

e Share, publish, replay

SharedFlow

interface SharedFlow<out T> : Flow<T> {
public val replayCache: List<T>
}

SharedFlow

interface MutableSharedFlow<T> :SharedFlow<T>, FlowCollector<T> {
suspend fun emit(value: T)
fun tryEmit(value: T): Boolean
val subscriptionCount: StateFlow<Int>
fun resetReplayCache()

SharedFlow

public fun <T> MutableSharedFlow(

replay: Int,

extraBufferCapacity: Int = O,

onBufferOverflow: BufferOverflow = BufferOverflow.SUSPEND
) : MutableSharedFlow<T>

SharedFlow

public fun <T> Flow<T>.shareIn(
scope: CoroutineScope,
replay: Int,
started: SharingStarted = SharingStarted.Eagerly

Flow since 1.3

e Core operators
o catch, onEmpty, onCompletion, onStart
o onEach, transform, transformWhile

e |nvariants

Flow since 1.3

suspend fun Flow<Int>.stopOn42() = collect {
println(it)
if (it == 42) {
throw AnswerFoundException()
}

Flow since 1.3

flow {

try {
emit(42)

} catch (e: AnswerFoundException) {
emit(21)

}

}.stopOn42()

Flow since 1.3

java.lang.lllegalStateException: Flow exception transparency is violated:

Previous 'emit' call has thrown exception
java.util.concurrent.CancellationException: Thanks, | had enough of your data, but
then emission attempt of value ‘21" has been detected.

Emissions from 'catch' blocks are prohibited in order to avoid unspecified
behaviour, 'Flow.catch' operator can be used instead.

For a more detailed explanation, please refer to Flow documentation.
at

kotlinx.coroutines.flow.internal.SafeCollector.exceptionTransparencyViolated(Saf
eCollector.kt:114)

Flow since 1.3

flowOf(42)
.catch { e -> println("Answer was found") }
.stopOn42()

Android update

P -
R

Android update

e The coroutines DEX size is optimized by 30%

e Startup time was significantly optimised

e CPU consumption of default dispatchers was drastically reduced

[1] github.com/Kotlin/kotlinx.coroutines/pull/1652

https://github.com/Kotlin/kotlinx.coroutines/pull/1652

JDK update

JDK update — Blocking calls

withTimeout(500.milliseconds) {
runInterruptible(Dispatchers.I0) {
serverSocket.accept()
}

More JDK updates

e Qut-of-the-box integration with BlockHound

e Integration with JDK 9 java.util.concurrent.Flow

[1] github.com/reactor/BlockHound
[2] docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html

https://github.com/reactor/BlockHound
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html
https://medium.com/netflix-techblog/reactive-programming-in-the-netflix-api-with-rxjava-7811c3a1496a
https://github.com/reactor/BlockHound

The future of coroutines

e SharedFlow and StateFlow stabilization

e Concise and cancellation-aware resource management
e Replacement for offer and poll

e More Flow time API for Ul programming

e Kkotlinx-coroutines-test stabilization

e Sliceable dispatchers

[1] github.com/Kotlin/kotlinx.coroutines/pull/1937

https://github.com/Kotlin/kotlinx.coroutines/pull/1937

Thanks! |
Have a nice Kotlil

@qwwdfsad

