
Kotlin 1.4 Online Event

October 12, 2020@relizarov

A Look Into
the Future
Roman Elizarov

A bit of history

Posted on February 15, 2016 by Andrey Breslav

2016

Kotlin 1.0

2017

Kotlin 1.1 Released with JavaScript
Support, Coroutines and more

Posted on March 1, 2017 by Roman Belov

Posted on November 28, 2017 by Dmitry Jemerov

Kotlin 1.2 Released:
Sharing Code between Platforms

2017

2018

Posted on October 29, 2018 by Roman Belov

Kotlin 1.3 Released with Coroutines,
Kotlin/Native Beta, and more

2020
Posted on August 17, 2020 by Svetlana Isakova

Kotlin 1.4 Released with a Focus
on Quality and Performance

Near future
Plans

Sharing code

JVM server/interoperability

Java interoperability: upcoming

• All new Java APIs: seamless interop
• JEP 359: Records (Preview)
• JEP 384: Records (Second Preview)
• JEP 360: Sealed Classes (Preview)

Driving forces

Driving forces: what to focus on?

Community

Comm. with
big usersSlack & Forums YouTrack KEEP

YouTrack vs KEEP

• KEEP design documents

• Worked out and prototyped

• KEEP issues corrections

https://kotl.in/issue

• Problems, ideals, proposals YouTrack #{language design}

YouTrack: language design

1.1

1.2

1.3

1.4

Distant future
Speculative, we are looking for feedback

The most voted request now

KT-11968: Statically accessible extensions

All Kotlin extensions are
resolved statically

KT-11968: Statically accessible extensions

What are you trying to achieve?

val Intent.Companion.SCHEME_SMS: String get() = "sms"

3rd-party type

Code with receiverCompanion type

KT-11968: Statically accessible extensions

val Intent.Companion.SCHEME_SMS: String get() = "sms"

Intent.SCHEME_SMS

What are you trying to achieve?

Why object is used here?

Similar/related problem

object Delegates {
fun <T : Any> notNull(): ...
// other declarations

}

What are you trying to achieve?

Similar/related problem

Delegates.notNull()

object Delegates {
fun <T : Any> notNull(): ...
// other declarations

}

What are you trying to achieve?

What is object?

object Delegates {
fun <T : Any> notNull(): ...
// other declarations

}

• Instance
val x = Delegates

• Namespace
Delegates.notNull()

•Type
x is Delegates

What is object?

object Delegates {
fun <T : Any> notNull(): ...
// other declarations

}

• Instance
val x = Delegates

•Type
x is Delegates

• Namespace
Delegates.notNull()

Library maintenance burden

What if you could declare
just a namespace?
object Delegates {

fun <T : Any> notNull(): ...
// other declarations

}

• Namespace
Delegates.notNull()

What if you could declare
just a namespace?
namespace Delegates {

fun <T : Any> notNull(): ...
// other declarations

}

• Namespace
Delegates.notNull()

Enables: companion namespaces

class Example {
companion object {

private val SOME_CONST = …
}

}

Enables: companion namespaces

class Example {
namespace {

private val SOME_CONST = …
}

}

Enables: namespaces extensions

val Intent.Companion.SCHEME_SMS: String get() = "sms"

Enables: namespaces extensions

val namespace<Intent>.SCHEME_SMS: String get() = "sms"

Code without receiver

Intent.SCHEME_SMS

What
we wanted!

Multiple receivers

Member extensions

class View {
fun Float.dp() = this * resources.displayMetrics.density

}

Float View

KT-10468: Multiple receivers

fun (View, Float).dp() = this * resources.displayMetrics.density

KT-10468: Multiple receivers

fun View.Float.dp() = …

KT-10468: Multiple receivers

fun Float.dp(implicit view: View) = …

Syntactic analogy

with(view) {
42f.dp()

}

Syntactic analogy

with<View>
fun Float.dp() = this * resources.displayMetrics.density

Take it further

inline fun <T> withTransaction(block: () -> T): T {
val tx = beginTransaction()
return try {

block()
} finally {

tx.commit()
}

}

Take it further

inline fun <T> withTransaction(block: () -> T): T {
val tx = beginTransaction()
return try {

block()
} finally {

tx.commit()
}

}

Take it further

inline fun <T> withTransaction(block: () -> T): T {
val tx = beginTransaction()
return try {

block()
} finally {

tx.commit()
}

}

Take it further

inline fun <T> withTransaction(block: () -> T): T {
val tx = beginTransaction()
return try {

block()
} finally {

tx.commit()
}

}

fun doSomething() {
withTransaction {

// code
}

}

No magic

Decorators

inline decorator fun <T> withTransaction(block: () -> T): T {
val tx = beginTransaction()
return try {

block()
} finally {

tx.commit()
}

}

fun doSomething() {
withTransaction {

// code
}

}

Decorators

inline decorator fun <T> withTransaction(block: () -> T): T {
val tx = beginTransaction()
return try {

block()
} finally {

tx.commit()
}

}

@withTransaction
fun doSomething() {

// code
}

The best
of two
worlds

Decorators with receivers

inline decorator fun <T> Tx.withTransaction(block: () -> T): T {
begin()
return try {

block()
} finally {

commit()
}

}

@withTransaction
fun doSomething() {

// code
} Gets additional receiver Tx

Decorators with receivers

@with<View>
fun Float.dp() = this * resources.displayMetrics.density

Just a
standard

decorator!

Public/private
property types
It does not have to be complicated

Minimal
design
needed

Ternary operator

• Kotlin has “if” expression
if (foo) a else b

• Kotlin consistently uses “?” in the context of nullability
foo ?: b

• Boolean abuse in APIs

Dec
lin

ed

Hard for existing code

Hard for novices, inconsistent

When to use which

Do you write nullable
or Boolean before ?The goal of Kotlin is to

enable type-safe APIs

Immutability
Cross-cutting trend

Mutable data

| Declare
data class State(

var lastUpdate: Instant,
var tags: List<String>

)

| SharenotifyOnChange(state.copy())

| Updatestate.lastUpdate = now()
state.tags += tag

Immutable data

| Declare
data class State(

val lastUpdate: Instant,
val tags: List<String>

)

Immutable data

| Declare
data class State(

val lastUpdate: Instant,
val tags: List<String>

)

| SharenotifyOnChange(state)

| Update
state = state.copy(

lastUpdate = now(),
tag = state.tags + tag

)

Can we have cake and eat it, too?

No stable
identity

Value-based class

val class State(
val lastUpdate: Instant,
val tags: List<String>

)

| Declare

Can we have cake and eat it, too?

Copying
syntax
sugar

val class State(
val lastUpdate: Instant,
val tags: List<String>

)

| Declare

| Updatestate.lastUpdate = now()
state.tags += tag

notifyOnChange(state)

Can we have cake and eat it, too?

val class State(
val lastUpdate: Instant,
val tags: List<String>

)

| Declare

| Updatestate.lastUpdate = now()
state.tags += tag

| Share

Experimental inline classes

inline class Color(val rgb: Int)

Confusing with Valhalla inline

Stable future for
experimental inline classes

@__TBD__
val class Color(val rgb: Int)

No stable identity

Stable future for
experimental inline classes

@__TBD__
val class Color(val rgb: Int)

No stable identity

Optimize away boxes when possible

Other contributions
to Kotlin features

Compiler
Sources

JVM JS LLVM

FE Plugins
(declare, resolve)

BE Plugins
(codegen)

Frontend

Common BE

JetPack Compose

@Composable
fun Greeting(name: String) {

Surface(color = Color.Yellow) {
Text(text = "Hello $name!")

}
}

JetPack Compose

@Composable
fun Greeting(name: String) {

Surface(color = Color.Yellow) {
Text(text = "Hello $name!")

}
}

A language
feature

Differentiable programming @Facebook

@Differentiable
fun foo(x: Float, y: Float): Float {

val a = x * y
val b = a + 5f
val c = b * b * b
return c

}

Automatic
differentiation

Conclusion

Recap

• JVM interop commitment
• Namespaces and extensions
• Multiple receivers
• Public/private property types
• Ternary operator
• Immutability and inline classes
• Other contributions

What else we are looking at?

• More concise syntax for algebraic types
• Data literals (collection literals, tuples, etc)
• Even more flexible properties
• Better API evolution/maintenance facilities
• Constant evaluation/folding

• And more!

@relizarov

Thanks!
Have a nice Kotlin

