. Kotlin 1.4 Online Event

A Look Into
the Future i
Roman Elizarov

@relizarov October 12, 2020

A bit of history

Kotlin 1.0

X Kotlin 1.0

Programming Language
for JVM and Android

Posted on February 15, 2016 by Andrey Breslav

Kotlin 1.1 Released with JavaScript
Support, Coroutines and more

language for JVM, Android & JS

Posted on March 1, 2017 by Roman Belov

Kotlin 1.2 Released:
Sharing Code between Platforms

Sharing Code
between 2017

Platforms

Posted on November 28, 2017 by Dmitry Jemerov

Kotlin 1.3 Released with Coroutines,
Kotlin/Native Beta, and more

Don’t block
Keep moving

2018

K Kotlin1l.3 COROUTINES

Posted on October 29, 2018 by Roman Belov

Kotlin 1.4 Released with a Focus
on Quality and Performance

2020
Posted on August 17, 2020 by Svetlana Isakova -

Near future

MERE

Sharing code

"o 1
A+
D *

JVM server/interoperability

, Productive J 2
| with 24 Kotlin 19

Java interoperability: upcoming

e All new Java APls: seamless interop
e JEP 359: Records (Preview)

e JEP 384: Records (Second Preview)
e JEP 360: Sealed Classes (Preview)

Driving forces

Driving forces: what to focus on?

Community

Slack & Forums Comm. with YouTrack

big users

,\/E

Youlrack vs KEEP

e KEEP — design documents
e \Worked out and prototyped

e KEEP Issues — corrections
e Problems, ideals, proposals — YouTrack

https://kotl.in/issue

YouTrack: language design

KF-6894+/ Created by Andreas Sinz 5 years ago Updated by John-Paul Cunliffe 4 years ago Visible to All Users

Callable reference with expression on the left hand side 70

1.1

K+-11235 Created by Sébastien Deleuze 5 years ago Updated by Dmitry Konchalenkov 9 months ago Visible to All Users

1.2 Allow specifying array annotation attribute single value 72
without arrayOf()

K+-4895 Created by llya Ryzhenkov 6 years ago Updated by Alexey Belkov 7 months ago Visible to All Users
1 3 . 1 I . .
. Support assignment of "when" subject to a variable 129
KF-/7//+0 Created by Sergei Lebedev 5 years ago Updated by lvan Kubyshkin 2 months ago Visible to All Users
1.4

SAM for Kotlin classes 211

Distant future

Speculative, we are looking for feedback

The most voted request now

KT-11968 Created by Eric Tsang 4 years ago Updated by Eduardo Fonseca 2 weeks ago Visible to All Users v

Adding statically accessible members to an existing Java class via 479 ify
extensions

KT-11968: Statically accessible extensions

~

All Kotlin extensions are
resolved statically

/

KT-11968: Statically accessible extensions

3"d-party type

/_H
val Intent.Companion.SCHEME SMS: String get() = "sms"
— ——
Companion type Code with receiver

What are you trying to achieve?

KT-11968: Statically accessible extensions

What are you trying to achieve?

Intent.SCHEME SMS

Similar/related problem

object Delegates {

fun <T : Any> notNull():
// other declarations

What are you trying to achieve?

Similar/related problem

What are you trying to achieve?

Delegates.notNull()

What is object?

Delegates {

1
e INStance

val X = Delegates
e [ype

X 1s Delegates

e Namespace
Delegates.notNull()

What is object?

Delegates {

Library maintenance burden

e Namespace
Delegates.notNull()

What if you could declare
Just a namespace?

Delegates {

}.

e Namespace
Delegates.notNull()

What if you could declare
Just a namespace?

}.

e Namespace
Delegates.notNull()

Enables: companion hamespaces

class Example A
companion object)q

private val SOME_CONST = ..
}

}.

Enables: companion hamespaces

class Example {
(namespace)

private val SOME_CONST = ..
}

}.

Enables: namespaces extensions

val(Intent.Companion).SCHEME SMS: String get() = "sms"

Enables: namespaces extensions

val (namespace<Intent>). SCHEME sMS: String get() = "sms"
H_J

Code without recelver

What
we wanted!

Intent.SCHEME SMS

Multiple recelivers

KT-10468 Created by Damian Wieczorek 5 years ago Updated by Margarita Bobova 4 weeks ago Visible to All Users v

* Multiple receivers on extension functions/properties 811l

Member extensions

class View {
fun Float.dp()
}.

this *x resources.displayMetrics.density

KT-10468: Multiple receivers

fun (View, Float).dp() = this * resources.displayMetrics.density

KT-10468: Multiple receivers

fun View.Float.dp() = ..

KT-10468: Multiple receivers

fun Float.dp(implicit view: View) = ..

Syntactic analogy

(with (view)) {

42F .dp ()
!

Syntactic analogy

with<View>

fun Float.dp()

this *x resources.displayMetrics.density

Take it further

inline fun <T> withTransaction(block: () -> T): T A

Take it further

inline fun <T> withTransaction(block: () -> T): T {

Take it further

inline fun <T> withTransaction(block: () -> T): T A
val tx = beglnTransaction()
return try A

(block()

} finally {
tx.commit()
}

Take it further

inline fun <T> withTransaction(block: () -> T): T {
val tx = beginTransaction ()
return try 4
block()
} finally {
tx.commit ()
1

}

fun doSomething() A

(withTransaction){ No magic
// code

Decorators

inline(decorator)fun <T> withTransaction(block: () -> T): T A

val tx = beginTransaction ()
return try 4
block ()
} finally {
tx.commit()
1

}.

fun doSomething() {
withTransaction {

// code

Decorators

decorator
Thfe best
fun doSomething() { 0 t\llrjo
// code worlds

}.

Decorators with receivers

inline decorator fun <T>(Tx.withTransaction(block: () -> T): T

@QwithTransaction
fun doSomething() A

d
1 // code Gets additional receiver Tx

Decorators with receivers

fun Float.dp() = this * resources.displayMetrics.density

Just a
standard
decorator!

Public/private
property types

It does not have to be complicated

KT-14663 Created by Svetlana Isakova 4 years ago Updated by David Friehs 6 months ago Visible to All Users v

Support having a "public” and a "private" type for the same property 119 il
Minimal
, : B : design
private val _items = mutableListOf<Item>()
needed

public val items: List<Item> get() = _items

Ternary operator

KT-5823 Created by Eugene Petrenko 6 years ago Updated by Denis Zharkov a year ago Visible to All Users v

Support ternary conditional operator 'foo ? a : b’ 80

When to use which
» Kotlin has “if" expression
if (foo) a else b Hard for existing code

» Kotlin consistently uses “?” in the context of nullability

foo ?: D
Hard for novices, inconsistent
 Boolean abuse in APIs

. Do you write nullable
\ The goal of Kotlin is to or Boolean before ?
enable type-safe APIs

Immutabllity

Cross-cutting trend

Mutable data

data class State(
var lastUpdate: Instant, | Declare
var tags: List<String>

state.lastUpdate = now()
state.tags += tag | Update

notifyOnChange(state {copy)()) | Share

Immutable data

data class State(

(val)lastUpdate: Instant, | Declare
(val)tags: List<String>
)

Immutable data

data class State(

val LlastUpdate: Instant,

val tags: List<String>

state = state(copy)

lastUpdate = now(),
Tag = state.tags + tag

)

notifyOnChange(state)

| Declare

| Update

| Share

Can we have cake and eat Iit, too?

(val)class State(
val lastUpdate: Instant, | Declare

val tags: List<String>

)

Value-based class

No stable
identity

Can we have cake and eat Iit, too?

val class State(
val lastUpdate: Instant, | Declare
val tags: List<String>

)

(state)lastUpdate = now() | Undat

(state)tags += tag paate
Copying
syntax

sugar

Can we have cake and eat Iit, too?

val class State(
val lastUpdate: Instant, | Declare
val tags: List<String>

state.lastUpdate = now()
state.tags += tag

| Update

notifyOnChange(state) | Share

Experimental inline classes

(inline)class Color(val rgb: Int)

A

4)
- Confusing with Valhalla inline

\)

Stable future for
experimental inline classes

@__TBD__
(val)class Color(val rgb: Int)

A

4 N
- No stable identity

_ _/

Stable future for
experimental inline classes

/

-

\

_

Optimize away boxes when possible

~
4/

val class Color(val rgb: Int)

A

N\

-

_

~

No stable identity
/

Other contributions
to Kotlin features

Compiler .
FE Plugins
@ (declare, resolve)
BE Plugins

JetPack Compose

@Composable
fun Greeting(name: String) {
Surface(color = Color.Yellow) {
Text(text = "Hello $name!")
!

JetPack Compose

fun Greeting(name: String) {
Surface(color = Color.Yellow) {
Text(text = "Hello $name!")
!
1

A language
feature

Differentiable programming @Facebook

@Differentiable

fun foo(x: Float, y: Float): Float {
val a = X * vy
val b = a + 5f
val ¢c = b x*xb % Db
return c

Automatic
differentiation

Growing community

e Arrow KT by 4/ Degrees
https://github.com/arrow-kt/arrow
e Power asserts by Brian Norman

https://github.com/bnorm/kotlin-power-assert

e <your project here>

Growing community

]
»

B
3
»
.
&

Recap

e JVM Interop commitment

e Namespaces and extensions

e Multiple recelvers

e Public/private property types
e [ernary operator

o Immutability and Inline classes
e Other contributions

What else we are looking at?

e More concise syntax for algebraic types

e Data literals (collection literals, tuples, etc)
e Even more flexible properties

o Better API evolution/maintenance facilities
e Constant evaluation/folding

e And more!

T hanks!

O
A
D
=
-
(O
@
>
(O
L

@relizarov

