. Kotlin 1.4 Online Event

t's time for Kotli
Multiplatform Mobile!
Fkaterina Petrova «

@KathrinPetrova October 14, 2020

-

| love mobile development,
but | can’t stand writing the
same code twice!

~

/

Me neither!

{=

mobile cross platform frameworks| X

mobile cross platform frameworks

mobile cross platform frameworks comparison

best mobile cross platform framework 2019

cross platform mobile development frameworks comparison

\
cross platform mobile app development frameworks S

=0

top cross platform mobile development frameworks

best cross platform mobile development frameworks

Google Search I'm Feeling Lucky

Report inappropriate predictions

Ul

Views

Presentation

Presenters, View Models, Controllers

Business / Domain

Entities, Use Cases, Interactors

Data / Core

Repositories, HTTP Clients, Cache

YA YA YS
NN N A N

& Ul centric

Ul

Views

Presentation

Presenters, View Models, Controllers

Business / Domain

Entities, Use Cases, Interactors

Data / Core

Repositories, HTTP Clients, Cache

YA YA YS
NN N A N

Core centric

& Ul centric

Ul

Views

React Native

. Flutter
Presentation

Presenters, View Models, Controllers

Xamarin Forms

Business / Domain

Entities, Use Cases, Interactors

Data / Core

Repositories, HTTP Clients, Cache

YA YA YS
NN N A N

Core centric

Ul

Views

Presentation

Presenters, View Models, Controllers

Business / Domain

Entities, Use Cases, Interactors

Data / Core

Repositories, HTTP Clients, Cache

YA YA YS
NN N A N

& Ul centric

React Native

Flutter

Xamarin Forms

Core centric

-

How can | share
business logic
and core code?

~

& Ul centric

Ul

Views

Y for thin clients,
simple apps, MVP

React Native

. Flutter
Presentation

Presenters, View Models, Controllers

Xamarin Forms

Business / Domain

Entities, Use Cases, Interactors

Data / Core

Repositories, HTTP Clients, Cache

YA YA YS
NN N A N

Core centric

& Ul centric

Ul

Views

Y for thin clients,
simple apps, MVP

React Native

. Flutter
Presentation

Presenters, View Models, Controllers

Xamarin Forms

Business / Domain

Entities, Use Cases, Interactors

W for complex apps,
Fat clients,

strict requirements
for the Ul quality

Data / Core

Repositories, HTTP Clients, Cache

YA YA YS
NN N A N

Core centric

& Ul centric

Ul

Views

Y for thin clients,
simple apps, MVP

React Native

. Flutter
Presentation

Presenters, View Models, Controllers

Xamarin Forms

Business / Domain Xamarin Native

Entities, Use Cases, Interactors

W for complex apps,
Fat clients,

strict requirements
for the Ul quality

JavaScript

+ JavaScriptCore

Data / Core

Repositories, HTTP Clients, Cache C ++

+ wrappers

YA YA YS
NN N A N

Core centric

| already have
a project

N

I'm creating
a hew one

& Ul centric

Ul

Views

Y for thin clients,
simple apps, MVP

Presentation

Presenters, View Models, Controllers

Business / Domain

Entities, Use Cases, Interactors KOtI I n
Multiplatform & for complex apps,
, Fat clients,
Data / Core Mobile strict requirements

for the Ul quality

Repositories, HTTP Clients, Cache

YA YA YS
NN N A N

Core centric

What is Kotlin
Multiplatform Mobile?

KMM =

Kotlin Multiplatform + [Mobile Features

MyModule K

Kotlin/Native l Kotlin/JVM

[|

. framework .Jjar

l !

% P

KMM =

Kotlin Multiplatform + B Mobile Features

Multiplatform Gradle DSL CocoaPods integration +
Kotlin/Native + Android Studio Plugin +
Kotlin/JVM +

Kotlin +

Creating a mobile
application with KMM

Step by step

Going cross-platform with KMM

New project =) Existing project

Going cross-platform with KMM

- New project =) Existing project

Going cross-platform with KMM

- New project - Existing project

MyModule k

Kotlin/Native J\Kotlin/JVM
Jar

. framework

l

!
% =

Going cross-platform with KMM

New project - Existing project

[Connect .framework to I0S project and .jar to Android project]

Going cross-platform with KMM

New project - Existing project

|

Write shared code in KMM Module]

Gmplement native Ul in Android/iOS projects]

[Connect .framework to I0S project and .jar to Android project]

Going cross-platform with KMM

New project - Existing project

| |

Write shared code in KMM Module] [Take code written in Kotlin for Android]

Gmplement native Ul in Android/iOS projects] [Refactor it to be compatible with iI0OS]

[Connect .framework to I0S project and .jar to Android project]

Going cross-platform with KMM

New project - Existing project
l Take a new feature | l

Write shared code in KMM Module] [Take code written in Kotlin for Android]

Gmplement native Ul in Android/iOS projects] [Refactor it to be compatible with iI0OS]

[Connect .framework to i0OS project and .jar to Android project]

Reload

SpaceX Launches

Launch name: FalconSat
Unsuccessful
Launch year: 2006

231 O @
SpaceX Launches
Launch name: FalconSat

Unsuccessful

Launch year: 2006

Networking

Cache
Native Ul

Launch details: Engine failure at 33 seconds
and loss of vehicle

Launch name: DemoSat
Unsuccessful
Launch year: 2007

Launch details: Successful first stage burn and
transition to second stage, maximum altitude
289 km, Premature engine shutdown at T+7
min 30 s, Failed to reach orbit, Failed to recover
first stage

Launch name: Trailblazer

Unsuccessful

Launch year: 2008

Launch details: Residual stage 1 thrust led to
collision between stage 1 and stage 2

Launch name: RatSat
Succ 1l
Launch year: 2008

Launch details: Ratsat was carried to orbit on
the first successful orbital launch of any
privately funded and developed, liquid-
propelled carrier rocket, the SpaceX Falcon 1

Launch name: RazakSat

Launch details: Engine failure at 33 seconds and loss
of vehicle

Launch name: DemoSat
Unsuccessful

Launch year: 2007

Launch details: Successful first stage burn and
transition to second stage, maximum altitude 289 km,
Premature engine shutdown at T+7 min 30 s, Failed to
reach orbit, Failed to recover first stage

Launch name: Trailblazer
Unsuccessful

Launch year: 2008

Launch details: Residual stage 1 thrust led to collision
between stage 1 and stage 2

Launch name: RatSat
Successful
Launch year: 2008

Launch details: Ratsat was carried to orbit on the first
successful orbital launch of any privately funded and
developed, liquid-propelled carrier rocket, the SpaceX

What to share?

KMM App Architecture

What to share?

Ul

Views

Presentation

Presenters, View Models, Controllers

Business / Domain

Entities, Use Cases, Interactors

Data / Core

Repositories, HTTP Clients, Cache

N [D
N N N

‘ Ktor

Android Engine IOS Engine
ThreadPool + NSURLSession
HttpURLConnection
Data / Core

Repositories, HTTP Clients, Cache

4

‘ Ktor

<t

Android Engine iOS Engine kotlinx.serialization
ThreadPool + NSURLSession
HttpURLConnection
Data / Core

Repositories, HTTP Clients, Cache

4

‘ Ktor

<t

(©

SQLDelight

Android Engine iOS Engine kotlinx.serialization Android Driver
ThreadPool + NSURLSession Native Driver
HttpURLConnection
Data / Core

Repositories, HTTP Clients, Cache

Entity.kt

*eEntity.kt

4

‘ Ktor

<t

(©

SQLDelight

Android Engine iOS Engine kotlinx.serialization Android Driver
ThreadPool + NSURLSession Native Driver
HttpURLConnection
Data / Core Business / Domain

Repositories, HTTP Clients, Cache

Entities, Use Cases, Interactors

SpaceXAPI .kt

Entity.kt

®eEntity.kt

Database .kt

4

‘ Ktor

<t

(©

SQLDelight

Android Engine iOS Engine kotlinx.serialization Android Driver
ThreadPool + NSURLSession Native Driver
HttpURLConnection
Data / Core Business / Domain

Repositories, HTTP Clients, Cache

Entities, Use Cases, Interactors

SpaceXSDK .kt

SpaceXAPI .kt

Entity.kt *eEntity.kt

Database .kt

4

‘ Ktor

<t

(©

SQLDelight

Android Engine iOS Engine kotlinx.serialization Android Driver
ThreadPool + NSURLSession Native Driver
HttpURLConnection
Data / Core Business / Domain

Repositories, HTTP Clients, Cache

Entities, Use Cases, Interactors

Source-set
commonMain

Source-set
AndroidMain

TN N

\
Compilation
main

Target

Source-set
iosMain

Compilation
main

TN N

framework

A)

Android

o /

o

Target
i0S

/

kotlin {
android()
ios()

}

Source-set
commonMain

Source-set
AndroidMain

TN Y

\
Compilation
main

Target

Android

o /

Source-set
iosMain

Compilation
main

TN N

framework

A)

o

Target
i0S

/

kotlin {

android()

ios()

sourceSets {
val commonMain by getting {
dependencies {

implementation("io.ktor :ktor-client-core:SkVrs")
implementation("org.jetbrains.kotlinx:kotlinx-serialization-core:SsVrs")
implementation("io.ktor :ktor-client-serialization:SkVrs")
implementation("com.squareup.sqldelight:runtime:SsqlVrs")

stdlib by default

Source-set
commonMain

Source-set

AndroidMain

-

Compilation
main

-

_/;//

o

Target
Android

/

Source-set
iosMain

/

Compilation
main

[.framework

= I\

Target

i0S
_

/

kotlin {

android()

ios()

sourceSets {
val commonMain by getting {
dependencies {

}
}

val

implementation("io.ktor :ktor-client-core:SkVrs")
implementation("org.jetbrains.kotlinx:kotlinx-serialization-core:SsVrs")
implementation("io.ktor :ktor-client-serialization:SkVrs")
implementation("com.squareup.sqldelight:runtime:SsqlVrs")

androidMain by getting A

dependencies {

}
}

val

implementation("io.ktor:ktor-client-android:SkVrs")
implementation("com.squareup.sqldelight:android-driver:SsVrs")

iosMain by getting {

dependencies {

}
}
}
}

implementation("io.ktor:ktor-client-ios:SkVrs")
implementation("com.squareup.sqldelight:native-driver:SsVrs")

stdlib by default
specifying dependencies only once

Source-set
commonMain

Source-set

AndroidMain

Compilation
main

f
-

_/F//

o

Target
Android

Source-set
iosMain

framework

/
Compilation
main

= I\

Target
i0S

/

o

/

kotlin {

android()

ios()

sourceSets {
val commonMain by getting {
dependencies {

}
}

implementation("io.ktor :ktor-client-core:SkVrs")
implementation("org.jetbrains.kotlinx:kotlinx-serialization-core:SsVrs")
implementation("io.ktor :ktor-client-serialization:SkVrs")
implementation("com.squareup.sqldelight:runtime:SsqlVrs")

val androidMain by getting {
dependencies {

}
}

implementation("io.ktor:ktor-client-android:SkVrs")
implementation("com.squareup.sqldelight:android-driver:SsVrs")

val iosMain by getting {
dependencies {

}
}
}
}

implementation("io.ktor:ktor-client-ios:SkVrs")
implementation("com.squareup.sqldelight:native-driver:SsVrs")

stdlib by default
specifying dependencies only once

hierarchical project structure support

Source-set

commonMain

Source-set

AndroidMain

Compilation
main

TN N

)
.

_

Target
Android

/

Source-set
iosMain

Source-set

iosArm64Main

Compilation
main

TN Y

framework

A

o

Target
i0SArm64

/

Source-set
iosX64Main

Compilation
main

TN Y

.framework

A

o

Target
iosX64

/

Diving into Kotlin Multiplatform

- Dmitry Savvinov
"y

What to share?

Ul

Views

Presentation

Presenters, View Models, Controllers

Business / Domain

Entities, Use Cases, Interactors

Data / Core

Repositories, HTTP Clients, Cache

C N O N
N N R N N

What to share?

MVIKotlin * 320
trikot.viewmodels MVI framework for Kotlin Multiplatform

Category: Architecture
Gradle: com.arkivanov.mvikotlin:mvikotlin:2.0.0-preview4

Meta abstraction of visual comj
Multiplatform

Kotlin: 1.3.70
Category: Ul Targets: androidJvm, ios_arm64, ios_x64, js, jvm,
U I linux_x64, common
moko-mvvm)
Views Model-View-ViewModel architecture components fo ©/THUE

mobile (android & ios) Kotlin Multiplatform development

Category: Architecture

Gradle: dev.icerock.moko:mvvm:0.8.0

Kotlin: 1.4.0

Targets: androidJvm, ios_armé4, ios_x64, common

Presentation

Presenters, View Models, Controllers

GITHUB

Business / Domain

Entities, Use Cases, Interactors

Data / Core

Repositories, HTTP Clients, Cache

C N D[D
N N N

Working on shared
code with KMM

Tight integration with
the I0S development process

Tight integration with
the I0S development process

e Call Kotlin code from Objective-C/Swift
and use i0S libraries from Kotlin

e |[ntegrate KMM module in i0OS
project through CocoaPods

e Write, run, test, debug shared
code all in Android Studio

Bidirectional interoperability
with Objective-C/Swift

fun getLaunches(): List<RocketLaunch> {
return database.getAllLaunches()

}

let launches = sdk.getLaunches()
let launch: RocketLaunch? = launches.first

kKt

.swift

Bidirectional interoperability
with Objective-C/Swift

suspend fun getLaunches(): List<RocketLaunch> {
val cachedLaunches = database.getAllLaunches()
return if (cachedLaunches.isNotEmpty()) {

cachedLaunches
} else {
api.getAllLaunches()
Y
Y
sdk.getLaunches() { launches, _ in
let launch: RocketLaunch? = launches?.first
}

kKt

.swift

Bidirectional interoperability
with Objective-C/Swift

@Throws(Exception::class)

suspend fun getLaunches(): List<RocketLaunch> {
val cachedLaunches = database.getAllLaunches()
return if (cachedLaunches.isNotEmpty()) {
cachedLaunches
} else {

api.getAllLaunches()
}

sdk.getLaunches() { launches, error in
if let launches = launches {
print(launches)
} else {

print(error?.localizedDescription)

}

kKt

.swift

Kotlin/Native interoperability
with Swift/Objective-C

Supports all basic concepts, including

e Companion objects

e Data classes

e Extensions

e Objective-C generics

e And so on kotl.in/objc_interop

https://kotlinlang.org/docs/reference/native/objc_interop.html

Integration with CocoaPods

kotlin {
android()
ios()

cocoapods {
summary = "CocoaPods test library”
homepage = "https://github.com/JetBrains/kotlin”

pod("AFNetworking", "~> 4.0.0")
podfile = project.file("../ios-app/Podfile")

} build.gradle.kts

use_frameworks!

target 'ios-app’' do
pod '‘kotlin_library', :path => '../kotlin-library’

end Podfile

Working on shared code
without switching IDEs

@ Kotlin Multiplatform Mobile
* % % % ¥

JJJJJJJJJ

kmm

I 1: Project

8> Resource Manager

Structure

74

¥ 2: Favorites

.Z Build Variants

jetbrains

shared src = commonMain @ kotlin = com

Project =

kmm_~/Projects/kmm _ -~
77'7‘—ﬁ

655 & M

com.jetbrains.example.kmm.androidAp..

Hello, Android 30!

= TODO Terminal “ Build

example = kmm = shared ¢ Platform 4 o'oiosAppv

2 — | .gitignore G Platform.kt

package com.jetbrains.example.kmm.shared

expect class Platfarm() £
val platfor

. } ,
pronet.. (@ (& @ g Configure Activity

Hello, iOS 13.5!

op.ap

and Android.

Pixel 2 APl 30

KMM Application

GG o HE K D0

Android Application Name

androidApp

iOS Application Name

iosApp

Shared Module Name

shared

Add sample tests for Share...

Creates a new Kotlin Multiplatform Mobile project that includes iOS
and Android applications and a module with code shared on iOS

Wy

Q

Cancel Previous Next m

2 Event Log G Layout Inspector

a|peso ¥

loye|nw3y 5

Jai0jdx3 8|14 821A8q []

@ & KMM - Platform.kt [KMM.shared.commonMain]

imonMain = kotlin com jetbrains example kmm @ shared . & androidApp ¥ A . Pixel 2API30 v P 5 | & %5 O a2 [l 9 Q
b Project € = @ — & Greeting.kt . iosTest.kt (& Platform.kt pe
L
g 2 KMM ~/Projects/KMM] package com.jetbrains.example.kmm.shared v g
& > Bm_gradle s
By idéa A 1 expect class Platform() {
. . A form: i
» 1 androidApp] val platfo String
% b bU||d | Shortcuts Contacts Watch
= » [gradle
= .
D i0SApp
O)
5 nshared .
2 > W build oshpp
24 N |
A \ src
ne
~" androidMain
androidTest
commonMain
» kotlin [commonMain] sources root
’ com.jetbrains.example.kmm.shared
& Greeting
©. Platform
commonTest
iosMain
iosTest
v g kotlin [iosTest] test sources root
- ¥ 1 com.jetbrains.example.kmm.shared
3 ¢ iosTest.kt
o
B ¢ build.gradle.kts
:’.l o .gitignore
ws Run: © iosApp GreetingTest.testExample g —
L
> &
af =44 7
= c |
S ¥ Process finished with exit code 0 g
& — 8
.. mE | <
o™
* — B L
» |- o
@ = <
c et o
.:.!._’ 2] m
i >
© X
= g
23] o
- 3
= TODO Terminal “ Build = 6: Logcat 2 Profiler = Database Inspector » 4: Run # 5: Debug @ Event Log (3 Layout Inspector

] Build iOS apblication finished in 5 s 593 ms (moments aao) 5:2 LF UTF-8 4spaces T @ & & @

Test & Deploy your
m0b|Ie apps with KMM

SaOROROROROROROROR

Introduction

Creating the KMM project

Adding dependencies
to the multiplatform library

Creating an application
data model

Configuring SQLDelight and
implementing cache logic

Implementing an API service

Building SDK

Creating the Android application

Creating the I0S application

Summary

=

Reload

SpaceX Launches

Launch name: FalconSat
Unsuccessful
Launch year: 2006

Launch details: Engine failure at 33 seconds
and loss of vehicle

Launch name: DemoSat
Unsuccessful
Launch year: 2007

Launch details: Successful first stage burn and
transition to second stage, maximum altitude
289 km, Premature engine shutdown at T+7
min 30 s, Failed to reach orbit, Failed to recover
first stage

Launch name: Trailblazer
Unsuccessful
Launch year: 2008

Launch details: Residual stage 1 thrust led to
collision between stage 1 and stage 2

Launch name: RatSat
Successful
Launch year: 2008

Launch details: Ratsat was carried to orbit on
the first successful orbital launch of any
privately funded and developed, liquid-
propelled carrier rocket, the SpaceX Falcon 1

Launch name: RazakSat

Successful

231 © 0O &

SpaceX Launches

Launch name: FalconSat
Unsuccessful
Launch year: 2006

Launch details: Engine failure at 33 seconds and loss
of vehicle

Launch name: DemoSat
Unsuccessful
Launch year: 2007

Launch details: Successful first stage burn and
transition to second stage, maximum altitude 289 km,
Premature engine shutdown at T+7 min 30 s, Failed to
reach orbit, Failed to recover first stage

Launch name: Trailblazer
Unsuccessful
Launch year: 2008

Launch details: Residual stage 1 thrust led to collision
between stage 1 and stage 2

Launch name: RatSat
Successful
Launch year: 2008

Launch details: Ratsat was carried to orbit on the first
successful orbital launch of any privately funded and
developed, liquid-propelled carrier rocket, the SpaceX

https://kotl.in/try-kmm

It's time for
Kotlin Multiplatform Mobile!

e KMM Goes Alpha! &%

It's time for
Kotlin Multiplatform Mobile!

e KMM Goes Alpha! &%
e FEasy to start

e |[ntegrate in existing projects with minimal cost

It's time for
Kotlin Multiplatform Mobile!

e KMM Goes Alpha! &%
e FEasy to start
e |[ntegrate in existing projects with minimal cost

e Be the part of a growing community and influence
the development of the whole ecosystem

How to start?

Learn how to KMM on
the new developer portal

\kotl.in/kmm—doc

/

& N

Find inspiration in stories
from various teams who
are already using KMM
iIn production

Qotl.in/kmm—cases

/

Try the new KMM Plugin
for Android Studio

\kotl.in/kmm—plugin

/

https://kotl.in/learn-kmm
https://kotl.in/learn-kmm
https://kotl.in/learn-kmm

Thanks!
Have a nice Kot

@KathrinPetrova

