
Kotlin 1.4 Online Event

October 15, 2020@vdtankov

Kotless
Kotlin Serverless
Framework
Vladislav Tankov



Introduction
to serverless
A few words on the hottest topic



Serverless is

a cloud-computing execution model 
in which the cloud provider runs
the server and dynamically manages 
the allocation of machine resources
Wikipedia

https://en.wikipedia.org/wiki/Cloud-computing
https://en.wikipedia.org/wiki/Execution_model


Basically, it means

1. Take small elements – stateless functions

2. Combine them with events to make an application

3. Run the application in the cloud



Async

Use

Sync

Rest API/b

/a

/b

/a



Why?



Pros of serverless

● Pay per request

● Scale up to thousands of CPUs

● Fault-tolerant



No cons?



### API route: GET /long
variable "_long_envvars" {
 type = "map"
 default = {
   KOTLESS_PACKAGES = "kotless"
 }
}

resource "aws_lambda_function" "_long" {
 function_name = "Handler__long"
 s3_bucket = "${aws_s3_bucket.ktltst_lambda_s3.bucket}"
 s3_key = "${aws_s3_bucket_object.ktltst_bucket_object.key}"
 source_code_hash = "${base64sha256(file("../build/libs/kotless-dsl-1.0-all.jar"))}"
 handler = "kotless.Lambda::handleRequest"
 runtime = "java8"
 timeout = 30
 role = "${aws_iam_role.ktltst_lambda_role.arn}"
 memory_size = 256
 environment = {
   variables = "${var._long_envvars}"
 }
}

resource "aws_lambda_permission" "_long" {
 statement_id = "AllowAPIGatewayInvoke"
 action = "lambda:InvokeFunction"
 function_name = "${aws_lambda_function._long.arn}"
 principal = "apigateway.amazonaws.com"
 source_arn = 
"${aws_api_gateway_deployment.ktltst_example_deployment.execution_arn}/*/*"
}

resource "aws_api_gateway_resource" "_long" {
 parent_id = "${aws_api_gateway_rest_api.ktltst_example_rest_api.root_resource_id}"
 rest_api_id = "${aws_api_gateway_rest_api.ktltst_example_rest_api.id}"
 path_part = "long"
}

resource "aws_api_gateway_method" "_long" {
 rest_api_id = "${aws_api_gateway_rest_api.ktltst_example_rest_api.id}"
 resource_id = "${aws_api_gateway_resource._long.id}"
 http_method = "ANY"
 authorization = "NONE"
}

resource "aws_api_gateway_integration" "_long" {
 rest_api_id = "${aws_api_gateway_rest_api.ktltst_example_rest_api.id}"
 resource_id = "${aws_api_gateway_method._long.resource_id}"
 http_method = "${aws_api_gateway_method._long.http_method}"
 depends_on = [
   "aws_api_gateway_method._long"
 ]
 integration_http_method = "POST"
 type = "AWS_PROXY"
 uri = "${aws_lambda_function._long.invoke_arn}"
}

Tons of configuration!



Could it be simpler?



Kotlin Serverless
Framework
Let’s change the game
(at least for the Web)



@Get("/hello-world")
fun helloWorld(): String {
   return "Hello World"
} 



Deduce configuration from code





Infrastructure in Code

● Write the code with the framework of your choice

● Choose a Cloud platform to use

● Let Kotless do the deployment for you



@Get("/hello-world")
fun helloWorld(): String {
   return "Hello World"
}

Code only



What is in the box?
Current state of the project



What is in the box?

● Number of supported frameworks

● Each of them can be deployed to the cloud

● With the target runtime of your choice



Supported frameworks

● Ktor

● Spring Framework

● Kotless’s own DSL



Supported clouds

● Amazon Web Services

● In development

○ Google Cloud Platform

○ Microsoft Azure



Supported runtimes

● Kotlin/JVM

● GraalVM

● In development

○ Kotlin/JS



Runtimes CloudsFrameworks



And even local starts!



Local development

● Local emulation of Cloud services

● Ability to debug serverless applications

● No cloud account required to try it



Summing it up

● Choose the runtime that best meets your needs

● Write an application with your favorite framework

● Test and debug it locally

● Deploy an application to your pr



How does it work?
A bit of internals



Under the hood

● Parse an application

● Generate a cloud-agnostic Schema

● Transpile the Schema to a Terraform 

● Perform the deployment

Application Terraform

Cloud

Schema

Parser Engine



@DynamoDBTable("table", ReadWrite)
object URLStorage {
   fun getByCode(code: String): String {
       ...
   }
}

Cloud integration

● Permissions are granted via 

Cloud-specific annotations

● Events also work via annotations



Demo
Better than a thousand words



What is next?
Future plans



In development

● Cloud Platforms
○ Google Cloud Platform
○ Microsoft Azure

● Runtimes
○ GraalVM
○ Kotlin/JS



Future plans

● IntelliJ IDEA plugin
○ Remote logs tailing
○ Debugging

● Cloud-specific extensions
○ Authentication
○ Events

● And lots more!



Thanks!
Have a nice Kotlin

@vdtankov


