
A Tale of Two Languages
John Pampuch jpampuch@google.com

Key Messages

● Kotlin and Java complement each other
● Kotlin may have accelerated Java

development
● Kotlin often leads in features, sometimes by

quite a bit

Competition is good: it leads to
better approaches everything!

Advantages

Kotlin

● Version independence from underlying
platform(s)
○ Independent, more rapid, innovation
○ Slightly easier to support multiple deployment

targets
○ E.g, JDK versions, Android versions, etc.

● Somewhat independent library structure
● Leverages the VM and OpenJDK Libraries

Java

● Aligned with JDK and VM development
● Mostly self-consistent

○ E.g, when lambdas were introduced, the entire
library surface was refreshed to leverage!

● Highly predictable releases
● Mostly self contained platform

Design Goals

Kotlin

● Kotlin is pragmatic
● Kotlin is interoperable
● Kotlin is object oriented

Java

● Simple, object-oriented, and familiar
● Robust and secure
● Architecture-neutral and portable
● High performance
● Interpreted, threaded, and dynamic

https://kotlinlang.org/spec/introduction.html
https://www.oracle.com/java/technologies/introduction-to-java.html

Premise: Competition Leads to Better Results

● New ideas
● Faster progress
● Better outcomes
● Excitement!

Some Caveats

● This talk is mostly about Java and Kotlin
○ Focus on Language features
○ Sometimes this presentation touches on some aspects of the platform

● There is far more to the Java ecosystem than just the programming
language
○ Also true of the broader Kotlin ecosystem

● Kotlin often benefits from platform enhancements
○ E.g., JVM performance, enhanced OpenJDK libraries

● Comparing Java and Kotlin is hard: both are part of extensive ecosystems
that target slightly different realms.

More Caveats

● I’m highlighting major features
○ Not every feature is captured here
○ Nor on patch releases, security releases, i18n updates, time-zone updates

● Every release has many improvements: bug fixes, security fixes,
performance improvements, etc.
○ A hidden “feature” of Java and Kotlin → continuous improvement!

● Both Java and Kotlin tend to release capabilities in at least two phases
○ experimental/preview/incubator

■ I refer to all of these as “Preview”
○ GA/stable/production-ready

Proprietary + Confidential

A
Brief
History
Java and Kotlin Evolution since Kotlin’s announcement

2011

Kotlin

● Kotlin announced - July 22, 2011

Starting from scratch (e.g., new from the
ground up) would be easier, but would
never get done!

● Instead: Pragmatism
● Bi-directional interop with Java
● And some hints of multi-platform

Java

● Java 7 - July 7, 2011
● Project Coin (small change!)

○ Strings in switch
○ Automatic resource management in

try-statement aka try-with-resources
statement

○ Improved type inference for generic instance
creation, aka the diamond operator <>

○ Simplified varargs method declaration
○ Binary integer literals
○ Improved numeric literals
○ Catching multiple exception types and

rethrowing exceptions with improved type
checking

● Also: InvokeDynamic

A lot of time passes! (2012-2014)

● Java moves slowly
○ Sun was moving slowly!
○ For a while, JDK releases were a bit like Star

Trek movies
○ Star Trek even numbered movies were good

■ JDK 6: Good
■ JDK 7: yawn
■ JDK 8: Good
■ JDK 9: yawn

● The new OpenJDK release schedule has
shaken things up a lot!

● Kotlin
● Focused on getting to its first public milestone
● Few people saw the progress
● Opensourced in Feb 2012
● Priorities:

○ Useful
○ Avoid gratuitous differences - minimize relearning

2014-2016

Kotlin 1.0 - February 15, 2016

● Kotlin works where Java works
● User Experience in mind

○ IDE support, build performance, toolability
● Backwards compatibility commitment
● Smart casts
● String Templates
● Named arguments

Leverages many ecosystem elements

● Gradle, Maven, etc.

Java 8 - March 8, 2014

● First LTS release!
● Lambda expressions, and method

references (Yay)
● Default methods in interfaces
● Type annotations, repeating annotations
● Improved type inference
● Method parameter reflection

Various platform updates

2017 - rapid updates
Kotlin 1.1 - March 1

● typealias
● Bound callable references
● Enhancements to sealed and data classes!
● Destructuring in lambdas
● Improved numeric literals
● Experimental: Coroutines

Kotlin 1.2 - November 28

● Improvements to type inference and smart
casts

● Preview: Multiplat

Java 9 - September 21

● First “new” release model release
● Removed _ as a valid variable name

Kind of a yawner, except

● Modules!

2018

Kotlin 1.3 - October 28

● Preview: Contracts
● Improvements:

○ when
○ nested classes in annotations
○ parameterless main

● Coroutines GA
○ With the Flow API

● Kotlin/native
● Preview: API Opt-in
● Preview: inline class
● Preview: Unsigned Integers

Java 10 - March 20

● Local Var type inference

Java 11 - September 25

● Second LTS release!
● Improvements to Lambdas, type inference

2019

Kotlin

No major releases!

MANY Minor releases:

1.3.20, 1.3.21, 1.3.30, 1.3.40, 1.3.41, 1.3.50,
1.3.60, 1.3.61

Java 12 - March 19

● Preview: switch expressions
● Preview: Pattern matching

Java 13 - September 17

● Second Preview: switch expressions
● Preview: Text Blocks

2020

Kotlin 1.4 - August 17

● SAM conversions for Kotlin interfaces
● Named Arguments improvements
● Trailing Commas!

Java 14 - March 17

● switch expressions
● Preview: record

Java 15 - September 15

● Preview: Sealed Classes and interfaces

2021
Kotlin 1.5 - May 5

● JVM record support
● Sealed interfaces
● Sealed class improvements
● inline (aka value) classes

Kotlin 1.5.30 - August 24

● Preview: Exhaustive when statement
● Preview: Suspending functions as supertypes

Kotlin 1.6 - November 16

● Exhaustive when statement
● Suspending functions as supertypes
● Stable suspend conversions
● More improvements in type inference

Java 16 - March 16

● Preview 2: Sealed classes and interfaces
● Records
● Pattern matching for instanceof

Java 17 - September 14 - Third LTS!

● Sealed classes and interfaces
● Preview: Pattern matching for switch
●

2022
Kotlin 1.6.20 - April 4

● Preview: Context receivers for Kotlin/JVM
● Preview: Definitely non-nullable types

Kotlin 1.7 - June 9

● Preview: K2
● Implementation by delegation to inlined value of

inline class
● Underscore operator for type arguments
● Builder inference
● Opt-in requirements
● Stable definitely non-nullable types

Kotlin 1.7.20

● Preview: ..< for open-ended ranges
● Preview: data objects

Java 18 - March 22

● Preview 2: Pattern matching for switch

Java 19 - September 20

● Preview: Virtual Threads
● Preview: record patterns
● Preview 3: Pattern matching for switch

2023

Kotlin 1.8 - December 28

● Internal compiler work but no major
features

Kotlin 1.8.20 - April 25

● Preview: K2
● Preview: Kotlin/Wasm
● Preview 2: data objects

Kotlin 1.9 - July 6

● ..< operator for open-ended ranges

Java 20 - March 21

● Preview 2: record Patterns
● Preview 4: Pattern Matching for switch
● Preview: Scoped Values
● Preview 2: Virtual Threads
● Preview 2: Structured Concurrency

Java 21 - September 19 - Fourth LTS!

● record Patterns
● Pattern Matching for switch
● Virtual Threads
● Preview: String Templates
● Preview: Unnamed Patterns and Variables
● Preview: Implicitly Declared classes and

Instance Main methods

2024

Kotlin 2.0 - May 21

● K2
● Smart cast improvements
● Multiplat improvements

Java 22 - March 19

● Unnamed Variables and Patterns
● Preview: Statements before super(...)
● Preview 2: String Templates
● Preview 2: Implicitly Declared classes and

Instance Main methods
● Preview 2: Structured Concurrency
● Preview 2: Scoped Values

Java 23 - TBD!

● TBD

What does this all mean?

Wins and Advantage

● Kotlin: Features faster
● Kotlin: Multiplat support - JVM, Android, iOS, Web, Wasm
● Both: High degree of backward compatibility
● Java: Faster compilation
● Kotlin: coroutines, async flow, channels,
● Kotlin: DSLs
● Kotlin: named arguments

Kotlin’s features are pragmatic, developer friendly abstractions that make code
more compact, easier to read and easier to write!

Thank you,
and don’t
forget to vote

A Tale of Two Languages
John Pampuch jpampuch@google.com

