KOTLIN/NATIVE
CONCURRENCY MODEL

NIKOLAY IGOTTIRJETBRAINS

WHAT DO WE WANT FROM
CONCURRENCY?

Do many things concurrently
Fasily offload tasks

Get notified once task a task 1s done
Share state safely

Mutate state safely

Avoid races and deadlocks

CONCURRENCY IN KOTLIN

* Kotlin as a language has no default concurrency
primitives

* Kothin/JVM uses JVM concurrency
» Kothn/]JS doesn’t have shared object heaps at all
* Threads are clumsy and error-prone

* Still concurrency 1s important on the modern
hardware

» Kotlin/Native got a chance to do better!

SHARED HEAP ON JVM

Thread 1

Thread 2,

THE CURSE OF SHARED
OBJECT HEAP

* JVM 1s designed to make objects accessible from many mutators
simultaneously

* 'Iracing GG requires complicated memory management algorithms
* root marking — STW == global GC pauses
* reachability analysis — STW (or complex algorithms) == GC pauses
* STW — barriers on JNI borders == heavyweight native interop

* Reference counting 1s hard to use on the shared heap
* 'Inicky to collect cycles
* Requires atomic counter update

* Programmers can make concurrency errors and runtime doesn’t help

DO WE REALLY NEED
OBJECT SHARING?

For immutable objects - defimtively

For mutable objects - better o

bject and 1ts transitive

closure be only accessible to t

ne single mutator at

the moment, 1.e. having reference works as a lock

This 1s better than mutex coming from
synchronized keyword: no locks on access, no
way to make concurrent update errors

It also sstmplifies memory manager logic

KOTLIN/NATIVE AT LARGE

* Kotlin source code to the self-contained machine code,

no VM or support libs
* For 105, macOS, Linux, Windows, WebAssembly targets
* Automated memory management, collect cycles

 Fully automated interoperability with G/ Objective-C/
Swift

* Access to plattorm APIs (POSIX, Foundation, AppKit,
biin s clc)

KOTLIN/NATIVE MEMORY
MANAGER

Simple local reterence-counter based algorithm
Cycle collector based on the trial deletion
Storage containers separated from the objects

Ditferent container classes (normal, concurrent,
permanent, arena)

No object moving
Interoperates with Objective-G runtime reference counter

No cross-thread/worker interactions on memory manager

KOTLIN GOT NO ‘CONST’

Immutability 1s not part of the type system (yet)
Let’s start with the runtime property (like with nullability)

Immutability 1s contagious, so propagates to the
transitive closure

Immutability 1s the one way road

So welcome Any . freeze ()
(kotlin.native.concurrent) extension function!

FREEZING

Makes transitive closure of objects reachable from the given
one immutable

Aggregate strongly connected component to the single
storage container, thus make any object graph a DAG

On mutation attempt a runtime exception 1s thrown
Frozen objects can be safely shared across workers

Some carefully designed classes (i.e. AtomicInt) are
marked as frozen, but could be mutated via concurrent-safe

APIs

System classes (like primitives boxes and
OIS SN2 are frozen by defauls

OBJECT GRAPHS
CONDENSATION -

object
graph 2

Detached
object
aeh.1 Object
(rc=1)
Strongly
connected .
component Object > = 1=e<1:)

Object :(> Condensed
(re=1) container

Object Object
(rc=1)

Object

Object

SHARING

Frozen object can be safely shared

Kotlin singleton objects (and companion objects) are
frozen automatically after creation and shared

Top level variables can be marked with the special
annotation @SharedImmutable

Default behavior of top level variables of non-value
types 1s that they available from the main thread only

Annotation @ThreadLocal marks top level variable
as having private copy for each thread

CONCURRENT EXECUTORS -
WORKERS

Kotlin/Native has workers for computation offload
Workers can only share immutable objects

Mutable objects are owned by a single execution
context (main thread or worker)

Every worker has a job queue

Main thread does not have a job queue (but there’s

Ul queue)
Workers are built on top of the OS threads

OBJECT TRANSFER

Sometimes we need to pass data to the concurrent executor
Along with data itself we could pass the ownership

We cannot pass only object itself, we have to pass what 1t
refers to

In reference-counted runtime we could easily ensure object
subgraph has no incoming references from the outside
world (trial deletion)

So welcome
kotlin.native.concurrent.Worker.execute

WORKER.EXECUTE

BllsAsFeflun <T1, T2>
execute(mode: TransferMode,
Elgadticer: () -> T1,
e el ambda job: (T1l) -> [iZ2):
@Bl re<T 2>

TransferMode controls reachability check
producer creates an object graph to detach and give to the worker

j ob 1s special non-capturing lambda taking only result of producer and
executed 1n worker context

returned object 1s a future, which could be checked for execution status or
consumed (on any worker), once ready

WORKER SAMPLE

fun factorize(value: UInt): Pair<UInt, List<UInt>> {
val result = mutableListOf<UInt>()
var current = value
outer@while (current > 1u) {
for (candidate in 2u .. current) {
if (current % candidate == Qu &% isPrime(candidate)) {
result += candidate
current = current / candidate
}
if (current == 1u) break@outer|
}
}

return Pair(value, result.sorted())

fun workerSample() {
val toFactorize = uintArrayOf(
Random.nextUInt(),
Random.nextUInt(),
Random.nextUInt(),
Random.nextUInt()
)
val COUNT = toFactorize.size
val workers = Array(COUNT, { _ -> Worker.start()})
val futures = Array(workers.size,
{ i -> workers[i].execute(TransferMode.SAFE, { toFactorizel[i] })
{ input => factorize(input) }
})
futures. forEach { future ->
future.consume { result ->
println("${result.first} is factored out to ${result.second.toString()}")
}

}

workers.forEach { it: Worker
it.requestTermination().result

}

OBJECT PING-PONG
EXAMPLE

Main thread Worker

—» Hello

data class Data(var int: Int)

fun pingPong() { e
val =

val worker = Worker.start()
val future = worker.execute(TransferMode.SAFE, { Data(42)}) {
it = it.int++
println($it")
it

N/ > £
}

val future2 = worker.execute(TransferMode.SAFE, {

val result = future.result
resu .L't . L] i_ afeofe Main thread Worker
println($result") 2 &

result e Helo
}) {

it => it.int++ 2 [E
printin($it")
it

}
printin(${future2.result}")

WHY OBJECT GRAPH
DETACHMENT?

Some objects are related

They usually point each to another

So 1f we want safe concurrency — they shall go together
DetachedObjectGraph is the container for such structure

Once detached — can be attached in another worker/thread
safely

Fully concurrent-sate, only one context can have access to
objects 1n 1solated object subgraph

GLOBAL VARIABLES

Singleton objects (object and enum keyword)
Top level variables

Source of the (implicit) state sharing
Singletons are frozen after creation

Most top level variables are only accessible from the main

thread

Some 1immutable top level variables are accessible
everywhere

Can be controlled with @ThreadLocal and
@ImmutableShared annotations

IMPORTANT CASES

 Shared cache: atomic reference for immutable
elements, detached object graphs for mutable
elements

* Job queue: use worker’s queue

* Global constants/configuration: use singleton
object or mark with @SharedImmutable, see
below

SHARED CACHE EXAMPLE

data class CacheEntry(var string: String = "name")

@SharedImmutable
val sharedImmutableCache = Array(size: 10) { _ -> AtomicReference<CacheEntry?>(value_: null) }

fun immutableCacheSample() {
val workers = Array(size: 10, { _ -> Worker.start()})
val futures = Array(workers.size) { 1 ->
workers[i].execute(TransferMode.SAFE, { i }) { workerIndex ->

for (attempt in 1..100) {
val modifyIndex = Random.nextInt(from: @, sharedImmutableCache.size)

val value = sharedImmutableCache[modifyIndex].value
= if (value == null) {
val candidate = CacheEntry(
string: "attempt #$attempt of worker $workerIndex at index $modifyIndex"

). freeze()
sharedImmutableCache [modifyIndex].compareAndSwap(expected: null, candidate)

}
}
// Ensure all operations are done.
futures.forEach { future -=> future.consume { } }

println(sharedImmutableCache.map {it -> it.value })

CONCURRENCY AND
INTEROP

* Kothin/Native 15 tightly tied with the G/ Objective-C world

* 'T'his world assumes threads/queues as a concurrency
primitives

* Let’s play nice!
» Detached object graphs can be passed as VO1d* anywhere

» Stable reference from any object can be passed as vo1d*
(only same thread for mutable, any for immutable)

* Objects can be pinned and pointer to object’s data can be
passed as (G pointer — no hard boundary with G world

CONCLUSIONS

Kotlin/Native allows fine grained runtime mutability
control with freeze () operation

Kotlin/Native enforces good practices of immutable
singleton objects and top level variables

Kotlin/Native provides sate concurrency mechanisms
(workers, detachable object graphs, atomics)

Kotlin/Native can interoperate with G and Objective-
C using concurrency-safe primitives

Kotlin/ Native helps with writing safe
concurrent code!

