
Kotlin/Native
concurrency model

nikolay igotti@JetBrains

What do we want from
concurrency?

• Do many things concurrently

• Easily offload tasks

• Get notified once task a task is done

• Share state safely

• Mutate state safely

• Avoid races and deadlocks

Concurrency in kotlin
• Kotlin as a language has no default concurrency

primitives

• Kotlin/JVM uses JVM concurrency

• Kotlin/JS doesn’t have shared object heaps at all

• Threads are clumsy and error-prone

• Still concurrency is important on the modern
hardware

• Kotlin/Native got a chance to do better!

Shared heap on JVM

The curse of shared
object heap

• JVM is designed to make objects accessible from many mutators
simultaneously

• Tracing GC requires complicated memory management algorithms

• root marking — STW == global GC pauses

• reachability analysis — STW (or complex algorithms) == GC pauses

• STW — barriers on JNI borders == heavyweight native interop

• Reference counting is hard to use on the shared heap

• Tricky to collect cycles

• Requires atomic counter update

• Programmers can make concurrency errors and runtime doesn’t help

Do we really need
object sharing?

• For immutable objects - definitively

• For mutable objects - better object and its transitive
closure be only accessible to the single mutator at
the moment, i.e. having reference works as a lock

• This is better than mutex coming from
synchronized keyword: no locks on access, no
way to make concurrent update errors

• It also simplifies memory manager logic

Kotlin/Native at large

• Kotlin source code to the self-contained machine code,
no VM or support libs

• For iOS, macOS, Linux, Windows, WebAssembly targets

• Automated memory management, collect cycles

• Fully automated interoperability with C/Objective-C/
Swift

• Access to platform APIs (POSIX, Foundation, AppKit,
Win32, etc.)

Kotlin/Native memory
manager

• Simple local reference-counter based algorithm

• Cycle collector based on the trial deletion

• Storage containers separated from the objects

• Different container classes (normal, concurrent,
permanent, arena)

• No object moving

• Interoperates with Objective-C runtime reference counter

• No cross-thread/worker interactions on memory manager

Kotlin got no ‘const’

• Immutability is not part of the type system (yet)

• Let’s start with the runtime property (like with nullability)

• Immutability is contagious, so propagates to the
transitive closure

• Immutability is the one way road

• So welcome Any.freeze()
(kotlin.native.concurrent) extension function!

Freezing
• Makes transitive closure of objects reachable from the given

one immutable

• Aggregate strongly connected component to the single
storage container, thus make any object graph a DAG

• On mutation attempt a runtime exception is thrown

• Frozen objects can be safely shared across workers

• Some carefully designed classes (i.e. AtomicInt) are
marked as frozen, but could be mutated via concurrent-safe
APIs

• System classes (like primitives boxes and
kotlin.String) are frozen by default

Object graphs
condensation

Sharing
• Frozen object can be safely shared

• Kotlin singleton objects (and companion objects) are
frozen automatically after creation and shared

• Top level variables can be marked with the special
annotation @SharedImmutable

• Default behavior of top level variables of non-value
types is that they available from the main thread only

• Annotation @ThreadLocal marks top level variable
as having private copy for each thread

concurrent executors -
workers

• Kotlin/Native has workers for computation offload

• Workers can only share immutable objects

• Mutable objects are owned by a single execution
context (main thread or worker)

• Every worker has a job queue

• Main thread does not have a job queue (but there’s
UI queue)

• Workers are built on top of the OS threads

Object transfer
• Sometimes we need to pass data to the concurrent executor

• Along with data itself we could pass the ownership

• We cannot pass only object itself, we have to pass what it
refers to

• In reference-counted runtime we could easily ensure object
subgraph has no incoming references from the outside
world (trial deletion)

• So welcome
kotlin.native.concurrent.Worker.execute

Worker.execute

• public fun <T1, T2>  
execute(mode: TransferMode,  
 producer: () -> T1,  
 @VolatileLambda job: (T1) -> T2):  
Future<T2>

• TransferMode controls reachability check

• producer creates an object graph to detach and give to the worker

• job is special non-capturing lambda taking only result of producer and
executed in worker context

• returned object is a future, which could be checked for execution status or
consumed (on any worker), once ready

Worker sample

Object ping-pong
example

Why object graph
detachment?

• Some objects are related

• They usually point each to another

• So if we want safe concurrency — they shall go together

• DetachedObjectGraph is the container for such structure

• Once detached — can be attached in another worker/thread
safely

• Fully concurrent-safe, only one context can have access to
objects in isolated object subgraph

Global variables
• Singleton objects (object and enum keyword)

• Top level variables

• Source of the (implicit) state sharing

• Singletons are frozen after creation

• Most top level variables are only accessible from the main
thread

• Some immutable top level variables are accessible
everywhere

• Can be controlled with @ThreadLocal and
@ImmutableShared annotations

Important cases

• Shared cache: atomic reference for immutable
elements, detached object graphs for mutable
elements

• Job queue: use worker’s queue

• Global constants/configuration: use singleton
object or mark with @SharedImmutable, see
below

Shared cache example

Concurrency and
interop

• Kotlin/Native is tightly tied with the C/Objective-C world

• This world assumes threads/queues as a concurrency
primitives

• Let’s play nice!

• Detached object graphs can be passed as void* anywhere

• Stable reference from any object can be passed as void*
(only same thread for mutable, any for immutable)

• Objects can be pinned and pointer to object’s data can be
passed as C pointer — no hard boundary with C world

Conclusions
• Kotlin/Native allows fine grained runtime mutability

control with freeze() operation

• Kotlin/Native enforces good practices of immutable
singleton objects and top level variables

• Kotlin/Native provides safe concurrency mechanisms
(workers, detachable object graphs, atomics)

• Kotlin/Native can interoperate with C and Objective-
C using concurrency-safe primitives

• Kotlin/Native helps with writing safe
concurrent code!

