
Description:
We present GDF, a Gamification Design Framework for designing gamified
applications through model-driven engineering mechanisms [1,2]. The framework
is based on a set of well-defined modelling layers that start from the definition
of the main gamification elements, followed by the specification of how those
elements are composed to design games, and then progressively refined to reach
concrete game implementation and execution. The layers are interconnected through
specialization/generalization relationships such as to realize a multi-level modelling
approach. This approach is implemented by means of JetBrains MPS, a language
workbench based on projectional editing, and has been validated through two gameful
systems in the education domain.

Antonio Bucchiarone
Fondazione Bruno Kessler
Trento, Italy
Email: bucchiarone@fbk.eu

Antonio Cicchetti
IDT Department
Mälardalen University
Vasteras, Sweden
Email: antonio.cicchetti@mdh.se

Annapaola Marconi
Fondazione Bruno Kessler
Trento, Italy
Email: marconi@fbk.eu

GDF: Engineering Gameful Applications
with JetBrains MPS

mailto:bucchiarone%40fbk.eu?subject=
mailto:antonio.cicchetti%40mdh.se?subject=
mailto:marconi%40fbk.eu?subject=

Why GDF is needed
Gamification is gaining popularity in domains that would benefit from an increased
engagement of their target users. Gamification applications are found in various
contexts, including education, health and environment, and e-banking, just to
mention a few. The growing adoption of gamified solutions has made their design
and development increasingly complex, owing to, for example, the number and variety
of users, and the mission-criticality of some of the applications. Therefore, a rigorous
development process is recommended to ensure the gamification project will succeed.[4]

An important challenge in the development and evolution of gameful systems is
the ability to revise or introduce new game elements and mechanics during the system
execution. This is needed in situations when the players’ attention decreases or when
the impact of the realized system is not as expected. In most of the existing approaches,
the design, analysis, and revision of gameful systems requires a lot of development
activities often unrelated to each other, with the use of various general-purpose
languages, such as Java. The different actors involved, such as a domain expert,
a system developer, impact managers, and so on, have been using different languages
and tools to execute their tasks with a completely different understanding of the game
concepts and their relations. This has led to addressing unexpected game deviations
with ad-hoc solutions that are often not reusable, making the monitoring and review of
the game mechanics and dynamics a very difficult task.

In order to tackle the complexity of gamification design, we propose the Gamification
Design Framework (GDF). The framework provides a modular approach that can be
customized for different gameful systems and is composed of a well-defined set of
languages for designing a game, its main components, and the behavioural details.
As a first validation, we re-designed and deployed a real gamification application in
the education domain.

How GDF works
The GDF architecture has been specified and comprises different modelling layers,
each of which is defined on the basis of the layer above. Moreover, utility layers are
orthogonal to the others in the sense that they can be defined on the basis of any
of them.

The top layer of this architecture is represented by a core language defined to introduce
the essential elements to describe a gameful system.

https://github.com/antbucc/GDF
https://github.com/antbucc/GDF

The top component of the architecture shows an excerpt of the concepts that define
the abstract syntax of the Gamification Modelling Language (GML). In particular,
a Game concept comprises a set of properties (id, domain, and owner) that characterize
the specific gameful system, and a set of children representing its core ingredients.
Each gamified application must be designed to define a set of game elements devoted
to specify how the players should interact with the application. The children part of

the Game concept of GML has been
defined for this purpose. This core
language provides the basic building
blocks on top of which all the subsequent
modelling layers can be described.

Based on the core ingredients in GML,
the Game Model Language (GaML) relies
on Game Mechanics and allows the game
designer to design a certain concrete
game. At this level of abstraction the
designer can specify in more detail how
the game components are assembled
to create a gamification application.
In particular, dataDrivenAction operators
act on data (kms, legs, etc.), while
eventDrivenAction is related to specific
events (surveys, check-in, etc.). skillPoint
points are used to denote a user’s ability
in a specific area, while experiencePoint
points are used to quantify a player’s
progression through the game. Finally,
badgeCollection and challenge represent
game elements that each player can
collect and achieve, respectively.
In this way GaML allows the designer
to specify game components that
are reusable in different gamification
scenarios. Notably, the abstract concept
experiencePoint can take the concrete
forms of pedibus_distance or Walk_Km,
depending on the target application.

A gamification engine is responsible
for the execution of one or more
instances of multiple games that may run
concurrently. Therefore, we introduced
GiML, a language that relies on
the Game Dynamics and is used to
specify the instantiation of the different
games originating from the same
GameDefinition as defined in GaML.
A game instance is a GameDefinition,
as prescribed in GaML, opportunely
instantiated to be run by the gamification
engine. In general, an instantiation
consists of the specification of
the players/teams involved in the game,

hence one or more instances of multiple games may run concurrently by means of
the same engine. The Game Instance Model Language (GiML) binds game definitions
coming from GaML with instantiation details. In particular, the classrooms define teams
and players that play in a certain instance of a game in the education domain.

When a game instance is running, the game state changes whenever one of the
mechanics defined in the game (such as score update, challenge achievement, etc.)
is used. In particular, this means that one of the game rules defined using GaML is
executed in a specific instance defined through GiML. Therefore, the game state evolves
as the right-hand side of the game rules prescribe to manipulate the object base
through the gamification engine services. Based on this, our approach provides support
for simulating the behavior of a running game under certain conditions, by means of
the GsML component. It is part of the Game Utility component of the GDF and its core
concept is represented by the GameSimulation element.

This concept is composed by a GameDefinition and a set of SingleGameExecution.
In this way, GsML allows modeling specific game scenarios together with triggered
mechanisms, and hence simulating specific game state changes (such as for testing
purposes).

The gamification engine exploited by the GDF includes a Recommendation System (RS)
able to generate challenges tailored to each player’s history, preferences, and skills.
In this context, the GadML language is used whenever new game content (such as a new
challenge generated by the RS) has to be assigned to a specific player on the fly.

PapyGame Design with GDF
We have used and validated GDF in diverse application domains, including smart
mobility and education. Our latest experience involved using GDF as the core
component of a specific gamified software modeling environment called PapyGame.
In PapyGame the Papyrus modeling tool has been extended with gamification features.
The objective of the gamification is to help master degree students in Computer Science
to learn specific modeling aspects using Papyrus for UML.

Each student assignment in PapyGame is composed of a set of Levels (grouped
in Series) that each student should deal with. For each level, an exercise is assigned,
and each passed level unlocks the next exercise of the next level. To start a PapyGame
session, the player must first enter their login and password. Once connected,
PapyGame displays a Dashboard representing the player’s series. Each successfully
completed level is displayed in green with the corresponding number of gold coins (GC)
and experience points (XP) rewarded. Remaining levels are colored in gray with a lock,
except for the first one which is the next level to be played (unlocked).

Each exercise is associated with a specific game type: the Hangman — when a new
part of the man drawing is added with every wrong answer, and the On Your Own
(OYO) — when the student executes the exercise with no help. At the same time,
each exercise has an associated set of point concepts (experience points, gold
coins, etc.) and rules. All these aspects are defined by the teacher by using GDF.
In particular the teachers execute the following steps in defining each level: (1) choose
a game type among the available games in the system (i.e, Hangman, OYO); (2) define
the goal and the description of the level; (3) create the expected (correct) diagram
in Papyrus according to the level objective; and (4) create the reward rules about points
and eventual bonuses.

https://www.papygame.com
https://dl.acm.org/doi/10.1145/3417990.3422002

GDF is used to automatically save this design task for the teacher and deploy it in
the PapyGame backend. This provides a way to define all the game elements that
regulate the game behavior through specific modeling editors. In particular, this is
possible by exploiting the editors provided by GDF and its related generators.

Once the students’ assignments are designed and deployed, the students can select
the respective levels and start playing and accumulating points. See the following
figure as an example. It presents the associated UML diagram containing a set of
classes connected with the generalization relationship. The goal of this level is to help
players/students associate the correct attributes and operations with the correct class
in the hierarchy. This is done using a drag-and-drop facility. An incorrect user selection
(moving an operation into a class that is not the one that should contain it) adds a part
of the hangman’s body (lower part of the example). If the player manages to place all
operations correctly without the body of the hanged person being completely displayed,
they win. The number of gold coins and XP is calculated according to the number
of errors (incorrect drag-and-drops). If the hangman’s body is completely displayed,
the player loses and the next level stays unlocked. As a consequence, they will have
to play the same level again. Whether the player wins or loses, after the completion of
a PapyGame game they are returned to the Dashboard view.

jetbrains.com/mps

Conclusions
We presented GDF, a framework for designing and deploying gameful applications.
GDF consists of domain-specific languages allowing for stepwise refinement of
application definitions, from higher levels of abstraction towards implementation code
to be run on a gamification engine.

MPS was chosen for engineering GDF for three main reasons: the need to provide
text-based DSLs, the availability of language extension mechanisms conveying
consistency management between abstraction layers, and the provision of generators
to automatically derive implementation code.

GDF has also been validated against multiple case studies in diverse domains,
notably education, smart mobility, and training in modeling. MPS has demonstrated
powerful capabilities but also a steep learning curve that could be unacceptable for
non-software engineers. In this respect, one of the main future research directions
we are pursuing is the integration of simplified user interfaces, such as dashboards,
to alleviate the complexity of game definitions for GDF users.

References
[1] Antonio Bucchiarone, Antonio Cicchetti, and Annapaola Marconi.

GDF: A gamification design framework powered by model-driven engineering.
22nd ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems Companion, MODELS Companion 2019, Munich, Germany,
September 15–20, 2019, pages 753–758. IEEE, 2019.

[2] Antonio Bucchiarone, Antonio Cicchetti, and Annapaola Marconi.
Exploiting multi-level modelling for designing and deploying gameful systems.
22nd ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, MODELS 2019, Munich, Germany, September 15–20, 2019, pages 34–44.
IEEE, 2019.

[3] Antonio Bucchiarone, Maxime Savary-Leblanc, Xavier Le Pallec,
Jean-Michel Bruel, Antonio Cicchetti, Jordi Cabot, Sebastien Gerard,
Hamna Aslam, Annapaola Marconi, Mirko Perillo:
Papyrus for gamers, let’s play modeling.
MODELS Companion 2020: 5:1–5:5

[4] Antonio Bucchiarone, Antonio Cicchetti, Annapaola Marconi:
Towards engineering future gameful applications.
ICSE (NIER) 2020: 105–108

https://www.jetbrains.com/mps/support/

