
mbeddr: an Extensible MPS-based Programming

Language and IDE for Embedded Systems

Markus Voelter

independent/itemis

voelter@acm.org

Daniel Ratiu
Bernhard Schaetz

Fortiss

{ratiu|schaetz}@fortiss.org

Bernd Kolb

itemis

kolb@itemis.de

Abstract

While the C programming language provides very good
support for writing efficient, low-level code, it does not
offer adequate means for defining higher-level abstrac-
tions relevant to embedded software. In this article we
present the MPS-based mbeddr technology stack that
supports extension of C with constructs adequate for
embedded systems. In mbeddr, efficient low-level pro-
grams can be written using the well-known concepts
from C. Higher-level domain-specific abstractions can
be seamlessly integrated into C by means of modu-
lar language extension regarding syntax, type system,
semantics and IDE. In the article we show how lan-
guage extension can address the challenges of embed-
ded software development and report on our experience
in building these extensions with MPS. We show that
MPS delivers on the promise of significantly reducing
the effort of language engineering and the construction
of corresponding IDEs. Both MPS and mbeddr are open
source software.

1. Challenges in Embedded Software

In this section we discuss a set of challenges we address
with the mbeddr approach. We label the challenges Cn

so we can refer to them from Section 2.2 where we show
how they are addressed by mbeddr C. While these are
certainly not all challenges embedded software develop-
ers face, based on our experience with embedded soft-
ware and feedback from various domains (automotive,
sensors, automation) and organizations (small, medium
and large companies), these are among the most impor-
tant ones.

C1: Abstraction without Runtime Cost Domain-
specific concepts provide more abstract descriptions of
the system under development. Examples include data
flow blocks, state machines, or data types with physical
units. On the one hand, adequate abstractions have a
higher expressive power that leads to shorter and eas-
ier to understand and maintain programs. On the other
hand, by restricting the freedom of programmers, do-
main specific abstractions also enable constructive qual-
ity assurance. For embedded systems, where runtime ef-
ficiency is a prime concern, abstraction mechanisms are
needed that can be resolved before or during compila-
tion, and not at runtime.

C2: C considered Unsafe While C is efficient and
flexible, several of C’s features are often considered
unsafe. For example, unconstrained casting via void
pointers, using ints as Booleans or the weak typing
implied by unions can result in runtime errors that are
hard to track down. Consequently, the unsafe features
of C are prohibited in many organizations. Standards
for automotive software development such as MISRA
limit C to a safer language subset. However, most C
IDEs are not aware of these and other, organization-
specific restrictions, so they are enforced with separate
checkers that are often not well integrated with the IDE.
This makes it hard for developers to comply with these
restrictions efficiently.

C3: Program annotations For reasons such as
safety or efficiency, embedded systems often require
additional data to be associated with program elements.
Examples include physical units, coordinate systems,
data encodings or value ranges for variables. These
annotations are typically used by specific, often custom-
built analysis or generation tools. Since C programs
can only capture such data informally as comments
or pragmas, the C type system and IDE cannot check
their correct use in C programs. They may also be
stored separately (for example, in XML files) and linked
back to the program using names or other weak links.



Even with tool support that checks the consistency of
these links and helps navigate between code and this
additional data, the separation of core functionality and
the additional data leads to unnecessary complexity and
maintainability problems.

C4: Static Checks and Verification Embedded sys-
tems often have to fulfil strict safety requirements. In-
dustry standards for safety (such as ISO-26262, DO-
178B or IEC-61508) demand that for high safety certi-
fication levels various forms of static analyses are per-
formed on the software. These range from simple type
checks to sophisticated property checks, for example by
model checking. Since C is a very flexible and relatively
weakly-typed language, the more sophisticated analy-
ses are very expensive. Using suitable domain-specific
abstractions (for example, state machines) leads to pro-
grams that can be analyzed much more easily.

C5: Process Support There are at least two cross-
cutting and process-related concerns relevant to em-
bedded software development. First, many certification
standards (such as those mentioned above) require that
code be explicitly linked to requirements such that full
traceability is available. Today, requirements are often
managed in external tools and maintaining traceability
to the code is a burden to the developers and often done
in an ad hoc way, for example via comments. Second,
many embedded systems are developed as part of prod-
uct lines with many distinct product variants, where
each variant consists of a subset of the (parts of) arti-
facts that comprise the product line. This variability is
usually captured in constraints expressed over program
parts such as statements, functions or states. Most ex-
isting tools come with their own variation mechanism,
if variability is supported at all. Integration between
program parts, the constraints and the variant config-
uration (for example via feature models) is often done
through weak links, and with little awareness of the se-
mantics of the underlying language. For example, the
C preprocessor, which is often used for this task, per-
forms simple text replacement or removal controlled by
the conditions in #ifdefs. As a consequence, variant
management is a huge source of accidental complexity.

An additional concern is tool integration. The diverse
requirements and limitations of C discussed so far often
lead to the use of a wide variety of tools in a single devel-
opment project. Most commercial off-the-shelf (COTS)
tools are not open enough to facilitate seamless and
semantically meaningful integration with other tools,
leading to significant accidental tool integration com-
plexity. COTS tools often also do not support meaning-
ful language extension, severely limiting the ability to
define and use custom domain-specific abstractions. By
building mbeddr onto MPS, users of mbeddr get access

Figure 1. Based on MPS, mbeddr comes with an im-
plementation of the C programming language. On top
of C mbeddr defines a set of default extensions (white
boxes) stacked on top of each other. Users can use them
in their programs, but they don’t have to. Support for
requirements traceability and product line variability is
cross-cutting. Users build their own extensions on top
of C or on top of the default extensions. (Note: compo-
nent/state machine integration and state machine tests
are not discussed in this paper.)

to the same powerful means of building languages and
language extensions as the original mbeddr developers.
Users who want to extend the tool and the languages
are not second-class citizens. This is a game changer.

2. The mbeddr Approach

Language engineering provides a holistic approach to
solve these challenges. In this section we illustrate how
mbeddr addresses the challenges with an extensible
version of the C programming language, growing a stack
of languages extensions (see Fig. 1).

2.1 Language Extension

Traditionally, languages are composed by referencing :
The partial programs expressed with different languages
reside in their own files and refer to each other via refer-
ences, often using qualified names. There is no syntactic
integration, where a single program file contains lan-
guage constructs defined in different languages. While
referencing is sometimes useful, syntactic integration
is required in many cases, as we will see in the ex-
amples provided in Section 2.2. There are two com-
position approaches that support syntactic integration,
both of them supported by MPS: language embedding
refers to the syntactic composition of two independent
languages. The embedded language has no dependency
on the host language. Both have been developed inde-
pendently, and the act of embedding does not require
changes to either language. In language extension, a
dependency from the extending language to the base
language is allowed, for example, by inheriting from
language concepts defined in the base language. The
mbeddr system relies primarily on language extension.

To make language extension useful, it must provide
deep syntactic and semantic integration, as well as an



Figure 2. Higher-level abstractions such as state ma-
chines or components are reduced incrementally to their
lower-level equivalent, reusing the transformations built
for lower-level extensions. Eventually, C text is gener-
ated which is subsequently compiled with a C compiler
suitable for the target platform.

IDE that is aware of the language extensions. It is much
more than a macro system or an open compiler. MPS
supports the flexible definition, extension, composition
and use of multiple languages. A language extension
defines new structure, syntax, type system rules and se-
mantics, as well, as optionally, support for refactoring,
quick fixes and debugging. The semantics of an exten-
sion are typically defined by a transformation back to
the base language. For example, in an extension that
provides state machines, these may be transformed to
a switch/case-based implementation in C. Extensions
can be stacked (Fig. 1), where a higher-level extension
extends (and transforms back to) a lower-level exten-
sion instead of C. At the bottom of this stack resides
plain C in textual form and a suitable compiler. Fig. 2
shows an example where a module containing a com-
ponent containing a state machine is transformed to C,
and then compiled.

A set of organizations, such as the departments in a
large company, will likely not agree on a single set of
extensions to C since they typically work in slightly dif-
ferent areas. Also, a language that contains all relevant
abstractions would become big and unwieldy. Thus, ex-
tensions have to be modular. They have to be defined
independent of each other, without modifying the base
language, and unintended interactions between inde-
pendently created extensions must be avoided (a discus-
sion of automatic detection of interactions is beyond the
scope of this paper). Also, users must be able to include
incrementally only those extensions into any given pro-
gram they actually need. Ideally, they should be able to
do this without requiring the definition of a ”combined
language” for each combination of used extensions: for
example, a user should be able to include an extension
providing state machines and an extension providing
physical units in the same program without first defin-
ing a combined language statemachine-with-units.

Challenge Example Extensions

C1 State machines
(Low-Overhead Components
Abstraction) Decision Tables
C2 Cleaned up C
(Safer C) Safe Modules
C3 Physical Units
(Annotations)
C4 Unit Tests
(Static Checks, State Machines
Verification) Safe Modules
C5 Requirements Traceability
(Process Support) Product Line Variability

Figure 3. Embedded software development challenges
and the example extensions in this section

2.2 Extensions addressing the Challenges

In this section we present example extensions that il-
lustrate how we address the challenges discussed in Sec-
tion 1. We show at least one example for each challenge.
Our aim in this paper is to showcase the extensibility of
the mbeddr system, and, by this, language engineering
using language workbenches. We will not discuss in de-
tail any particular extension. The table in Fig. 3 shows
an overview over the challenges, the examples in this
section, and the ways of extension each example makes
use of.

A cleaned up C (addresses C2) To make C extensi-
ble, we first had to implement C in MPS. This entails
the definition of the language structure, syntax and type
system1. In the process we changed some aspects of C.
Some of these changes are a first step in providing a safer
C (C2). Others changes were implemented because it is
more convenient to the user or because it simplified the
implementation of the language in MPS. Out of eight
changes total, four are for reasons of improved robust-
ness and analyzability, two are for end user convenience
and three are to simplify the implementation in MPS.
We discuss some of them below.

mbeddr C provides modules (Fig. 4). A module con-
tains the top level C constructs (such as structs, func-
tions or global variables). These module contents can be
exported. Modules can import other modules, in which
case they can access the exported contents of the im-
ported modules. While header files are generated, we do
not expose them to the user: modules provide a more
convenient means of controlling modularizing programs
and limiting which elements are visible globally.

1 A generator to C text is also required, so the code can be fed into
an existing compiler. However, since this generator merely renders
the tree as text, with no structural differences, this generator is
trivial. We do not discuss it any further



Figure 4. Modules are the top-level container in
mbeddr C. They can import other modules, whose ex-
ported contents they can then use. Exported contents
are put into the header files generated from modules.

mbeddr C does not support the preprocessor because
it is often used to emulate missing features of C in ad-
hoc way, leading to problems regarding maintenance
and analyzability. Instead, mbeddr C provides first class
support for the most important use cases of the prepro-
cessor. Examples include the modules mentioned above
(replacing #include) as well as the support for vari-
ability discussed below (replacing #ifdefs). Instead of
defining macros, users can create first-class language ex-
tensions including type checks and IDE support. Re-
moving the preprocessor and providing specific support
for its important use cases goes a long way in creating
more maintainable and more analyzable programs. The
same is true for introducing a separate boolean type
and not interpreting integers as Booleans by default.
An explicit cast operator is available.

Type decorations, such as array brackets or the
pointer asterisk must be specified on the type, not on
the identifier (int[] a; instead of int a[];). This has
been done for reasons of consistency and to simplify the
implementation in MPS: it is the property of a type to

be an array type or a pointer type, not the property of
an identifier. Identifiers are just names.

Decision Tables (addressing C1) are a new kind of
expression, i.e. they can be evaluated. An example is
shown in Fig. 5. A decision table represents nested if
statements. It is evaluated to the value of the first cell
whose column and row headers are true (the evaluation
order is left to right, top to bottom). A default value
(FAIL) is specified to handle the case where none of
the column/row header combinations is true. Since
the compiler and IDE have to compute a type for
expressions, the decision table specifies the type of its
result values explicitly (int8_t).

Figure 5. A decision table evaluates to the value in the
cell for which the row and column headers are true,
a default value otherwise (FAIL in the example). By
default, a decision table is translated to nested ifs in
a separate function. The figure shows the translation
for the common case where a decision table is used in a
return. This case is optimized to not use the indirection
of an extra function.

Unit Tests (addresses C4) are new top-level con-
structs (Fig. 6) introduced in a separate unittest lan-
guage that extends the C core. They are like void func-
tions without arguments. The unittest language also in-
troduces assert and fail statements, which can only
be used inside test cases. Testing embedded software can
be a challenge, and the unittest extension is a first step
at providing comprehensive support for testing. mbeddr
also provides support for platform-independent logging
as well as for specifying stubs and mocks. We do not
discuss this in this paper.

Components (addresses C1) are new top level con-
structs that support modularization, encapsulation and



Figure 6. The unittest language introduces test cases
as well as assert and fail statements which can only
be used inside of a test case. Test cases are transformed
to functions, and the assert statements become if
statements with a negated condition. The generated
code also counts the number of failures so it can be
reported to the user via a binary’s exit value.

the separation between specification and implementa-
tion (Fig. 7). In contrast to modules, a component uses
interfaces and ports to declare the contract it obeys.
Interfaces define operation signatures and optional pre
and post conditions (not shown in the example). Pro-
vided ports declare the interfaces offered by a compo-
nent, required ports specify the interfaces a component
expects to use. Different components can implement
the same interface differently. Components can be in-
stantiated (also in contrast to modules), and each in-
stance’s required ports have to be connected to com-
patible provided ports provided by other component
instances. Polymorhphic invocations (different compo-
nents ”behind” the same interface) are supported.

State Machines (addresses C1, C4) provide a new
top level construct (the state machine itself) as well
as a trigger statement to send events into state ma-
chines (see Fig. 8). State machines are transformed
into a switch/case-based implementation in the C pro-
gram. Entry, exit and transition actions may only access
variables defined locally in state machines and fire out
events. Out events may optionally be mapped to func-
tions in the surrounding C program, where arbitrary be-
haviour can be implemented. This way, state machines
are semantically isolated from the rest of the code, en-
abling them to be model checked: if a state machine
is marked as verifiable, we also generate a represen-

Figure 7. Two components providing the same inter-
face. The arrow maps operations from provided ports
to implementations. An indirection through function
pointers enables different implementations for a single
interface, enabling OO-like polymorphic invocations.



tation of the state machine in the input language of
the NuSMV model checker2, including a set of property
specifications that are verified by default. Examples in-
clude dead state detection, dead transition detection,
non-determinism and variable bounds checks. In addi-
tion, users can specify additional high-level properties
based on the well-established catalog of temporal logic
properties patterns.

Figure 9. The units extension ships with the SI base
units. Users can define derived units (such as the mps in
the example) as well as convertible units that require a
numeric conversion for mapping back to SI units. Type
checks ensure that the values associated with unit liter-
als use the correct unit and perform unit computations
(as in speed equals length divided by time). Errors are
reported if incompatible units are used together (e.g. if
we were to add length and time). To support this fea-
ture, the typing rules for the existing operators (such as
+ or /) have to be overridden.

Physical Units (addresses C3) are new types that
also specify a physical unit in addition to their actual
data type (see Fig. 9). New literals are introduced to
support specifying values for these types that include
the physical unit. The typing rules for the existing op-
erators (+, * or >) are overridden to perform the cor-
rect type checks for types with units. The type system
also performs unit computations to deal correctly with
speed = length/time, for example.

Requirements Traces (addresses C5) are meta data
annotations that link a program element to require-
ments, essentially elements in other models imported
from requirements management tools. Requirements
traces can be attached to any program element without
that element’s definition having to be aware of this (see
green highlights in Fig. 10).

Presence Conditions (addresses C5) A presence
condition determines whether the program element to
which it is attached is part of a product in the product
line. A product is configured by specifying a set of con-
figuration flags and the presence condition specifies a
Boolean expression over these configuration switches3.

2 http://nusmv.fbk.eu
3 We use feature models to express product configurations, and
the presence conditions are expressions over features. But this
aspect is not essential to the discussion here.

Like requirements traces, presence conditions can be at-
tached to any program element. For example, in Fig. 10,
the resetted out event and the on start... transi-
tion in the second state have the resettable presence
condition, where resettable is a reference to a config-
uration flag. Upon transformation, program elements
whose presence condition evaluates to false for a par-
ticular product configuration are simply removed from
the program (and hence will not end up in the gener-
ated binary). This program customization can also be
performed by the editor, effectively supporting variant-
specific editing.

Safe Modules (addresses C2) Safe modules help pre-
vent writing risky code. For example, runtime range
checking is performed for arithmetic expressions and
assignments. To enable this, arithmetic expressions are
replaced by function calls that perform range checking
and report errors if an overflow is detected. As another
example, safe modules also provide the safeheap state-
ment that automatically frees dynamic variables allo-
cated inside its body (see Fig. ??).

2.3 Addressing the Tool Integration Challenge

We have not highlighted tool integration as an explicit
challenge, because it is a cross-cutting issue that affects
all of the challenges above. Nonetheless, in a project
intended to be used by practitioners, this needs to
be addressed. We do that by providing an integrated
environment that provides state-of-the-art IDE support
for C and all of its extensions. This includes syntax
highlighting, code completion, static error checking and
annotation, quick fixes and refactorings. Fig. 10 shows
a screenshot of the tool, as we edit a module with a
decision table, a state machine, requirements traces and
presence conditions.

3. Experiences

In this section we provide a brief overview over our
experiences in implementing mbeddr based on MPS,
including the size of the project and the efforts spent.

3.1 Language Extension

Size Typically, lines of code are used to describe the
size of a software system. In MPS, a ”line” is not neces-
sarily meaningful. Instead we count important elements
of the implementation and then estimate a correspond-
ing number of lines of code. Fig. 11 shows the respective
numbers for the core, i.e. C itself plus unit test sup-
port, decision tables and build/make integration (the
table also shows how many LOC equivalent we assume
for each language definition element, and the caption
explains to some extent the rationale for these factors).
According to our metric the C core is implemented with
less than 10,000 lines of code.



Figure 8. A state machine is embedded in a C module as a top level construct. It declares in and out events as well
as local variables, states and transitions. Transitions react to in events, and out events can be fired in actions.
Through bindings (e.g. tickHandler), state machines interact with C code. State machines can be instantiated.
They are transformed to enums for states and events, and a function that executed the state machine using switch
statements. The trigger statement injects events into a state machine instance by calling the state machine function.

Let us look at an incremental extension of C. The
components extension (interfaces, components, pre and
post conditions, support for mock components in test-
ing and a generator back to plain C) is ca. 3,000 LOC
equivalent. The state machines extension is ca. 1,000.
Considering the fact that these LOC equivalents rep-
resent the language definition (incl. type systems and
generators) and the IDE (incl. code completion, syntax
coloring, some quick fixes and refactorings), this clearly
speaks to the efficiency of MPS for language develop-
ment and extension.

Effort In terms of effort, the core C implementation
has been ca. 4 person months divided between three
people. This results in roughly 2,500 lines of code per
person month. Extrapolated to a year, this would be
7,500 lines of code per developer. According to Mc-
Connell4, in a project up to 10,000 LOC, a developer
can typically do between 2,000 and 25,000 LOC. The
fact that we are at the low end of this range can be
explained by the fact that MPS provides very expres-
sive languages for DSL development: you don’t have to
write a lot of code to express a lot about a DSL. In-
stead, MPS code is relatively dense and requires quite

4 http://www.codinghorror.com/ blog/2006/07/diseconomies-of-
scale-and-lines-of-code.html

a bit of thought. Pair programming is very valuable in
language development.

Once a developer has mastered the learning curve,
language extension can be very productive. The state
machines and components extension have both been
developed in about a month. The unit testing extension
or the support for decision tables can be implemented
in a few days.

Language Modularity, Reuse and Growth Mod-
ularity and composition is central to mbeddr.

Building a language extension should not require
changes to the base languages. This requires that the
extended languages are built with extension in mind.
Just like in object-oriented programming, where the
only methods can be overridden, only specific parts of
a language definition can be extended or overwritten.
The implementation of the default extensions served as
a test case to confirm that the C core language is in fact
extensible. We found a few problems, especially in the
type system and fixed them. None of these fixes were
”hacks” to enable a specific extension — they were all
genuine mistakes in the design of the C core. Due to
the broad spectrum covered by our extensions, we are
confident that the current core language provides a high
degree of extensibility.

Independently developed extensions should not in-
teract with each other in unexpected ways. While MPS



Figure 10. A somewhat overloaded example program
in the mbeddr IDE (an instance of MPS). The module
contains an enum, a decision table and a state machine.
Requirements traces are attached to the table and the
step in event, and a presence condition is attached to
an out event and a transitions

provides no automated way of ensuring this, we have not
seen such interactions so far. The following steps can be
taken to minimize the risk of unexpected interactions.
Generated names should be qualified to make sure that
no symbol name clashes occur in the generated C code.
An extension should never consume ”scarce resources”:
for example, it is a bad idea for a new Statement to
require a particular return type of the containing func-
tion, or change that return type during transforma-
tion. Two such badly designed statements cannot be
used together because they will likely require differ-
ent return types. Note that unintended syntactic inte-
gration problems between independently developed ex-
tensions (known from traditional parser-based systems)
can never happen in MPS. This was one of the reasons
to use MPS for mbeddr.

Modularity should also support reuse in contexts not
anticipated during the design of a language module.
Just as in the case of language extension (discussed
above), the to-be-reused languages have to be writ-
ten in a suitable way so that the right parts can be
reused separately. We have shown this with the state
machines language. State machines can be used as top
level concepts in modules (binding out events to C func-
tions) and also inside components (binding out events
to component methods). Parts of the transformation of
a state machine have to be different in these two cases,
and these differences were successfully isolated to make

Element Count LOC-Factor

Language Concepts 260 3
Property Declarations 47 1
Link Declarations 156 1
Editor Cells 841 0.25
Reference Constraints 21 2
Property Constraints 26 2
Behavior Methods 299 1
Type System Rules 148 1
Generation Rules 57 10
Statements 4919 1.2
Intentions 47 3
Text Generators 103 2

Total LOC 8,640

Figure 11. We count various language definition ele-
ments and then use a factor to translate them into lines
of code. The reasons why many factors are so low (e.g.
reference constraints or behavior methods) is that the
implementation of these elements is made up of state-
ments, which are counted separately. In case of editor
cells, typically several of them are on the same line,
hence the fraction. Finally, the MPS implementation
language supports higher order functions, so some state-
ments are rather long and stretch over more than one
line: this explains the 1.2 in the factor for statements.

them exchangeable. Also, we reuse the C expression lan-
guage inside the guard conditions in a state machine’s
transitions. We use constraints to prevent the use of
those C expression that are not allowed inside transi-
tions (for example, references to global variables). Fi-
nally, we have successfully used physical units in com-
ponents and interfaces.
Summing up, these facilities allow different user groups
to develop independent extensions, growing the mbeddr
stack even closer towards their particular domain. The
fact that all of them are possible with MPS clearly illus-
trates MPS’ suitability for defining non-trivial language
ecosystems.

Why MPS? A central pillar to our work is MPS.
Our choice of MPS is due to its support for all aspects of
language development (structure, syntax, type systems,
IDE, transformations), its support for flexible syntax as
a consequence of projectional editing and its support for
advanced modularization and composition of languages.
The ability to attach annotations to arbitrary program
elements without a change to that element’s definition
is another strong advantage of MPS (we we use this
for presence conditions and trace links, for example).
No other freely available tool provides support for all
those aspects, but some are supported by other tools.
For example, Eclipse Xtext5 and its accompanying tool

5 http://eclipse.org/xtext



stack supports abstract and concrete syntax definition,
IDE support and transformations, but it is weak regard-
ing non-textual syntax and modularization and compo-
sition of languages. TU Delft’s Spoofax6 concise type
system definition. Intentional Software7 supports ex-
tremely flexible syntax and language composition (it is
a projectional editor) but is not easily available.

Another important reason for our choice is the matu-
rity and stability of MPS and the fact that it is backed
by a major development tool vendor (JetBrains).

While the learning curve for MPS is significant (a
developer who wants to become proficient in MPS lan-
guage development has to invest at least a month),
we found that is scales extremely well for larger and
more sophisticated languages. This is in sharp contrast
to some of the other tools the authors worked with,
where implementing simple languages is quick and easy,
and larger and more sophisticated languages are dispro-
portionately more complex to build. This is illustrated
by very reasonable effort necessary for implementing
mbeddr.

Projectional Editing Projectional editing is often
considered a drawback because the editors feel some-
what different and the programs are not stored as text,
but as a tree (XML). We already highlighted that MPS
does a good job regarding the editor experience, and
we feel that the advantages of projectional editors re-
garding syntactic freedom far outweigh the drawback
of requiring some initial familiarization. Our experience
so far with about ten users (pilot users from industry,
students) shows that after a short guided introduction
(ca. 30 minutes) and an initial accomodation period (ca.
1-2 days), users can work productively with the projec-
tional editor. Regarding storage, the situation is not any
worse than with current modeling tools that store mod-
els in a non-textual format, and MPS does provide good
support for diff and merge using the projected syntax.

4. Summary

Based on our experience with mbeddr as well as expe-
riences with other language workbenches, MPS is cur-
rently clearly the most powerful and flexible one. It is
also reasonably mature and stable. Considering the pub-
lished MPS roadmap, we are confident that MPS will
remain a leader in language workbenches for the forsee-
able future and we are looking forward to many interest-
ing additions to mbeddr based on new features provided
by MPS.

6 http://spoofax.org
7 http://intentsoft.com


